“Mom, My School Bus Is a Peaking Power Plant” and Other Things We Didn’t Say When We Were Kids

It is amazing that we get to see things we never thought were possible within our lifetime. The smartphone is a great example — who could imagine that we’d have technology more advanced than what we saw on Star Trek as a kid?

Innovations in energy storage technologies fall into this category too. We’re beginning to see the energy and transportation sectors collide in new applications that create new value streams. Electric vehicle fleets have the ability to provide aggregated bi-directional power for other uses including supporting the electric grid, integration of distributed generation, and the ability to deliver emergency power capabilities.

Our companies are working together on developing vehicle-to-grid (V2G) technology for non-tactical fleets in select military installations for the Department of Defense (DOD) to improve energy independence and grid resiliency. But the story goes deeper than advancing our military’s capabilities and reducing fuel expenditures.

Advancements in battery technology, power conversion and system integration have put us at the forefront of new and exciting capabilities that will solve issues in other areas such as school buses — massive vehicles designed pretty much for one thing: getting kids to and from school. 

There are about a half million school buses in the U.S. Most of the time, those investments are idle. They typically make two 25-mile loops per day with start-stop traffic, which is a perfect use case for EVs. With regenerative braking, a huge battery is not required. Typically, electric school buses would need a high power DC charger to insure that they can be recharged between morning and afternoon loops. Electric school buses are becoming cost-effective due to lower EV battery costs and other advancements in electric vehicles. These vehicles can eliminate fuel costs and most maintenance costs to school districts.  

As V2G technology matures from initial military-driven applications, it will provide two other significant value-added benefits. First, school buses are only used during school days (~180 days/year), and are unused during the summer months. With bi-directional chargers these idle energy storage assets can provide peaker plant capability. For example, with a 50-kW bi-directional charger for each bus, 500,000 buses could theoretically provide 25 GW of peak capacity. While only a portion of all school buses will be electrified near term, even a fraction of this capacity would significantly improve several states’ peak summer load problems. We feel that as the systems mature the industry will provide both the products and third party financing to school districts so that no capital requirements will be needed, immediately saving school districts money which can be reallocated toward educational programs.

Second, the same buses and infrastructure could provide emergency backup power during weather related disasters. During hurricanes and other natural disasters, where do local residents go? They often shelter in local public schools, where the same EV school buses could provide emergency power. The mobility of school buses also increases their value as emergency power sources, and can be recharged directly from distributed PV charging systems.

One of the big problems in Hurricane Sandy’s aftermath was not lack of fuel. There was fuel in the New York City area, but the gas stations could not pump it without electricity. Energy storage systems as well as EVs with bi-directional power conversion will be increasingly attractive solutions to these emergency power needs.

We believe small and modular energy storage systems combined with distributed generation will be successful in meeting the challenge as New York City and other metro areas prepare for the next major grid failure. Some of these storage systems will be stationary, others will be mobile in EVs. We also believe these systems will be both economic and financed by third parties without upfront capital costs since they can deliver multiple value streams that pay for their financing. We’ve all seen what third-party financing has done to unlock solar demand. We’re beginning to see the trend emerge in commercial-scale energy storage systems.  

The grid storage and EV industries are still in early stages, much like the solar industry was a decade ago. Their growth will depend long term on cost reductions in batteries and power conversion, and we expect steady improvements, also similar to the solar industry. However, the initial higher value markets for grid storage and EVs are cost-effective today. Commercial EV fleets of trucks and buses with V2G capabilities is one of these early markets that can be economic near term.  

The DOD has a long history of driving commercial technology innovation including nuclear power, jet engines, GPS, and even the Internet. We support their initiative to improve the grid resiliency of our military installations and the reliability of our power grid. These efforts may eventually create a new industry that can also lower the cost of safely delivering our children to and from school and create more robust cities.

Russell Ristau is the co-founder, president and CEO of Coritech Services, Inc., providing electrical engineering, system integration and manufacturing since 1996.  He holds a Bachelor of Science Degree in Electrical Engineering from Lawrence Technological University and is a Licensed Professional Engineer in the State of Michigan.

Previous articleRevenue Streams Are Key to Cost-Effective Energy Storage
Next articleABB Hit by Wind, Solar Charges for Third Consecutive Quarter
Jennifer Runyon
Jennifer Runyon has been studying and reporting about the world's transition to clean energy since 2007. As editor of the world's largest renewable energy publication, Renewable Energy World, she observed, interviewed experts about, and reported on major clean energy milestones including Germany's explosive growth of solar PV, the formation and development of the U.S. onshore wind industry, the U.K. offshore wind boom, China's solar manufacturing dominance, the rise of energy storage, the changing landscape for utilities and grid operators and much, much, more. You can reach her at Jennifer.Runyon@ClarionEvents.com Today, in addition to managing content on Renewable Energy World and POWERGRID International, she also serves as the conference advisory committee chair for DISTRIBUTECH, a globally recognized conference and expo for the transmission and distribution industry. In her role, she works in close cooperation with a large team of committed industry executives to shape the educational content for the event. She also helps assemble the renewable energy content for POWERGEN and helped launch the first Grid-Scale Storage Summit, a co-located event at HYDROVISION International. She has traveled to Germany to see onshore and offshore wind installations; Iceland to see geothermal energy in action; and France to see cutting-edge smart grids. In the U.S. she has visited and reported about bioenergy power plants in Florida, both large-scale and small-scale hydropower; and multiple wind farms, solar PV, and CSP installations. Formerly, she was the managing editor of Innovate Forum, an online publication that focused on innovation in manufacturing. Prior to that she was the managing editor at Desktop Engineering magazine. In 2008, she won an "Eddy Award" for her editing work on an article about solar trees in Vienna. In 2010, RenewableEnergyWorld.com was awarded an American Business Media Neal Award for its eNewsletters, which were created under her direction. She holds a Master's Degree in English Education from Boston University and a BA in English from the University of Virginia.

No posts to display