Anumakonda Jagadeesh's Comments

January 30, 2015

Seven Reasons Cheap Oil Can't Stop Renewables Now

Outstanding article. Congratulations.
Dr.A.Jagadeesh Nellore(AP),India

January 29, 2015

Converting Olive Mash into Bio Cash

Excellent.
Dr.A.Jagadeesh Nellore(AP),India

January 28, 2015

There Is Solar, And There Is Solar

Good article.
More that roof top solar there is vast scope for small wind turbines in India.
The world market for small wind has continued to grow: As of the end of 2012, a cumulative total of at least 806’000 small wind turbines were installed all over the world. This is an increase of 10 % compared with the previous year, when 730’000 units were registered.
Most of the growth happens in only three countries: China, USA and UK. This situation is a clear indication that the world market for small wind turbines is still in its infancy stage. In most countries you can at least find a handful of small wind turbines, but the vast majority of these countries is far from market size which would enable companies to reach mass production. More and better policies are imperative for making small wind a success all over the world.
The recorded small wind capacity installed worldwide has reached more than 678 MW as of the end of 2012. This is a growth of 18 % compared with 2011, when 576 MW were registered. In 2011, the growth rate was still at 21 %. China accounts for 39 % of the global capacity, the USA for 31 % and UK for 9,4 %. These three leading markets, China, USA and UK installed together around 89 MW of new capacity in the year 2012 (80 % of the world market), a capacity increase of 16 %, slightly below the global growth rate.
(WWEA RELEASES SUMMARY OF 2014 SMALL WIND WORLD REPORT UPDATE:
March 20, 2014).

There is vast scope to harness wind through small wind turbines. The Advantages:

1.Small wind turbines can be cost effective when mass produced
2.They are easy to install
3.They require least Maintenance
4.Life period about 20 years
5.Ubits for manufacture can be set up even in small workshops
6.Wind is available in day and night
7.Wind speed increases with height as such tall apartments experience high winds.
8.In Nellore(AP),India I have seen wind turbines working on the top of buildings even in the
months of December and January. Normally in most parts of the country Wind energy is
harnessed during South West Monsoon only(May to September)

I will be promoting small wind turbines especially VAWT(Vertical Axis Wind Turbine)in Nellore where there are thousands of High-rise Apartments.
Put the WIND to WORK: To get inexhaustible, pollution-free energy which cannot be misused.
Dr.A.Jagadeesh Nellore(AP),India
Wind Energy Expert
E-mail: anumakonda.jagadeesh@gmail.com

January 26, 2015

US To Support India's $160 Billion Solar Energy Push

Most welcome. One area where there can be co-operation between India and US is Biofuel:
The United States produces mainly biodiesel and ethanol fuel, which uses corn as the main feedstock. Since 2005 the US overtook Brazil as the world's largest ethanol producer. In 2006 the US produced 4.855 billion US gallons (18.38×106 m3) of ethanol. The United States, together with Brazil accounted for 70 percent of all ethanol production, with total world production of 13.5 billion US gallons (51×106 m3) (40 million metric tons). When accounting just for fuel ethanol production in 2007, the U.S. and Brazil are responsible for 88% of the 13.1 billion US gallons (50×106 m3) total world production. Biodiesel is commercially available in most oilseed-producing states. As of 2005, it was somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities (in comparison to petroleum products and ethanol fuel). Due to increasing pollution control and climate change requirements and tax relief, the U.S. market is expected to grow to 1 to 2 billion US gallons (3.8×106 to 7.6×106 m3) by 2010.
Biofuels are mainly used mixed with fossil fuels. They are also used as additives. The largest biodiesel consumer is the U.S. Army. Most light vehicles on the road today in the US can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. The demand for bioethanol fuel in the United States was stimulated by the discovery in the late 90s that methyl tertiary butyl ether (MTBE), anoxygenate additive in gasoline, was contaminating groundwater. Cellulosic biofuels are under development, to avoid upward pressure on food prices and land use changes that would be expected to result from a major increase in use of food biofuels.
Biofuels are not just limited to liquid fuels. One of the often overlooked uses of biomass in the United States is in thegasification of biomass. There is a small, but growing number of people using woodgas to fuel cars and trucks all across America.
The challenge is to expand the market for biofuels beyond the farm states where they have been most popular to date. Flex-fuel vehicles are assisting in this transition because they allow drivers to choose different fuels based on price and availability.
It should also be noted that the growing ethanol and biodiesel industries are providing jobs in plant construction, operations, and maintenance, mostly in rural communities. According to the Renewable Fuels Association, the ethanol industry created almost 154,000 U.S. jobs in 2005 alone, boosting household income by $5.7 billion. It also contributed about $3.5 billion intax revenues at the local, state, and federal levels. On the other hand, in 2010, the industry received $6.646 billion in federal support (not counting state and local support).
Based upon average U.S. corn yields for the years 2007 through 2012, conversion of the entire US corn crop would yield 34.4 billion gallons of ethanol which is approximately 25% of 2012 finished motor fuel demand.
US has expertise in Biofuel. In the debate Food Vs Fuel,there are alternatives. India can be world leader in Biofuel/Biogas for power. There are care-free growth,regenerative and CAM plants like Agave and Opuntia which are ideal for Biofuel/biogas for power production besides Biochar. These can be raised in millions of hectares of waste land in India . One more advantage is both of these plants act as Carbon Sink.
Mexico is already doing this.
Agave tequilana weber can yield up to 2,000 gallons of distilled ethanol per acre per year and from 12,000-18,000 gallons per acre per year if their cellulose is included, some 14 dry tons of feedstock per acre every year.
These figures far outshine the plants that are dominating ethanol and bio fuels R&D and investment today, not only in terms of potential ethanol yield per acre, but also in terms of energy balance (the ratio of energy in the product to the energy input to produce it), as well as actual and prospective planted acreage.
Corn ethanol, for example, has an energy balance ratio of 1.3 and produces approximately 300-400 gallons of ethanol per acre. Soybean bio diesel with an energy balance of 2.5, typically can yield 60 gallons of bio diesel per acre while an acre of sugar cane can produce 600-800 gallons of ethanol with an energy balance of 8.0. An acre of poplar trees can yield more than 1,500 gallons of cellulosic ethanol with an energy balance of 12.0, according to a National Geographic study published in October 2007.
According to Arturo Velez, Agave Expert:
“On an annualized basis agave produces 3X more distilled ethanol than sugar cane in Brasil; 6X more distilled ethanol than yellow corn in the US; at least 3X more cellulosic ethanol than switchgrass or poplar tree. Producing one gallon of distilled ethanol from agave costs at the most half the cost of one gallon from sugar cane and one fourth of corn's production cost.
One hectare of Agave captures at least 5X more CO2 than one hectare of the fastest growing Eucalyptus on a high density plantation and in one single year agave produces the same cellulose pulp Eucalyptus produces in 5 years”..
CAM species such as Agave show considerable promise as a biofuel crop for the future due to their high water-use efficiency, tolerance to abiotic stress (e.g., drought and high temperatures), and potential for high biomass production on marginal lands .
The optimal use of water to grow a selected feedstock is of critical importance because water scarcity, more than any other factor, determines whether land is suitable for growing food crops. Thus, growing plants with high water-use efficiency on land that is too dry to grow food crops is a potentially powerful strategy for producing biomass feed stocks in large amounts while minimizing competition with the food supply. Additionally, making productive use of semi-arid land can have positive effects on poor rural areas. The water-use efficiency (WUE) value (grams CO2 fixed/kilogram water transpired) varies markedly among plants with different types of photosynthetic metabolism. C3 plants typically have WUE values of 1–3; C4 plants, between 2 and 5; whereas crassulacean acid metabolism (CAM) plants have values between 10 and 40. Therefore, CAM plants can be cultivated in arid or semi-arid land normally unsuitable for the cultivation of most C3 and C4 crops. It is exceedingly unlikely that a C3 or C4 plant could be developed, with or without genetic modification, with water-use efficiency approaching that of CAM plants.Moreover, CAM plants are native to essentially every state in the USA except Alaska, although they are prominent parts of ecosystems only in the Southwest.
In spite of this potential, CAM plants have received much less systematic study or development as energy crops relative to inherently less water-efficient plants such as corn (maize), sugarcane, switch grass Miscanthus, poplar, sugar beets, Jatropha, soy, and canola.
Cellulose content is far more in Agave Americana compared to Deciduous Wood,sugarcane,wheat straw,corn stover and switch grass while lignin content is far less in Agave Americana as compared to the others mentioned.
A group of Mexican researchers believe they've discovered what they call the "missing energy crop," and though it hasn't exactly been missing-it grows abundantly in Mexico and in some southern U.S. and South American locations-these scientists claim agave possesses characteristics superior to other feedstocks currently being examined for biofuel purposes, such as cellulosic ethanol production.
Agave is arguably one of the most significant plants in Mexican culture. It has a rosette of thick fleshy leaves, each of which usually end in a sharp point with a spiny margin, and is commonly mistaken for cacti.

President Barack Obama’s Plan to tackle Climate Change includes,” The US will increase its research and development of bio ethanol as fuel. I believe biomass and ethanol are a part of the solution and belong in the green transition. Yet bio fuels and ethanol are many things. Not all are green and not all are sustainable in the broadest sense. For bio ethanol to belong in the green economy it has to deliver substantial greenhouse gas savings and avoid negative impact on food prices. Only then will it be good business for farmers and good for the climate. The technology is available and ready to be scaled up. Second generation bio ethanol is an emerging market with the potential to reduce 85 pct. of CO2 emission compared to regular fossil fuels in transportation. It is also a local resource increasing energy independence and creating local jobs in agriculture, factories and logistics.”. It is most welcome.

Hitherto Corn and Sugarcane are used in the biofuel production. In the debate on FOOD Vs FUEL, it is necessary to find alternatives.

“Agave has a huge advantage, as it can grow in marginal or desert land, not on arable land,” and therefore would not displace food crops, says Oliver Inderwildi, at the University of Oxford. The majority of ethanol produced in the world is still derived from food crops such as corn and sugarcane. Speculators have argued for years now that using such crops for fuel can drive up the price of food.

Agave, however, can grow on hot dry land with a high-yield and low environmental impact. The researchers proposing the plant’s use have modeled a facility in Jalisco, Mexico, which converts the high sugar content of the plant into ethanol.
The research, published in the journal Energy and Environmental Science, provides the first ever life-cycle analysis of the energy and greenhouse gas balance of producing ethanol with agave. Each megajoule of energy produced from the agave-to-ethanol process resulted in a net emission of 35 grams of carbon dioxide, far below the 85g/MJ estimated for corn ethanol production. Burning gasoline produces roughly 100g/MJ.“The characteristics of the agave suit it well to bioenergy production, but also reveal its potential as a crop that is adaptable to future climate change,” adds University of Oxford plant scientist Andrew Smith. “In a world where arable land and water resources are increasingly scarce, these are key attributes in the food versus fuel argument, which is likely to intensify given the expected large-scale growth in biofuel production.”

Agave already appeared to be an interesting bio ethanol source due to its high sugar content and its swift growth. For the first time Researchers at the universities of Oxford and Sydney have now conducted the first life-cycle analysis of the energy and greenhouse gas (GHG) emissions of agave-derived ethanol and present their promising results in the journal Energy & Environmental Science.

On both life cycle energy and GHG emissions agave scores at least as well as corn, switch grass and sugarcane, while reaching a similar ethanol output. The big advantages agave has over the before mentioned plants is that it can grow in dry areas and on poor soil, thus practically eliminating their competition with food crops and drastically decreasing their pressure on water resources.

Plants which use crassulacean acid metabolism (CAM), which include the cacti and Agaves, are of particular interest since they can survive for many months without water and when water is available they use it with an efficiency that can be more than 10 times that of other plants, such as maize, sorghum, miscanthus and switchgrass. CAM species include no major current or potential food crops; they have however for centuries been cultivated for alcoholic beverages and low-lignin fibres.
They may therefore also be ideal for producing biofuels on land unsuited for food production.

In México, there are active research programs and stakeholders investigating Agave spp. as a bioenergy feedstock. The unique physiology of this genus has been exploited historically for the sake of fibers and alcoholic beverages, and there is a wealth of knowledge in the country of México about the life history, genetics, and cultivation of Agave. The State of Jalisco is the denomination of origin of Agave tequilana Weber var. azul, a cultivar primarily used for the production of tequila that has been widely researched to optimize yields. Other cultivars of Agave tequilana are grown throughout México, along with the Agave fourcroydes Lem., or henequen, which is an important source of fiber that has traditionally been used for making ropes. The high sugar content of Agave tequilana may be valuable for liquid fuel production, while the high lignin content of Agave fourcroydes may be valuable for power generation through combustion.

Along with Agave species described above, some other economically important species include A. salmiana, A. angustiana, A. americana, and A. sisalana. Agave sisalana is not produced in México, but has been an important crop in regions of Africa and Australia. Information collected here could thus be relevant to semi-arid regions around the world.

Agave is a CAM Plant. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions in a plant using full CAM, the stomata in the leaves remains shut during the day to reduce evapotranspiration, but open at night to collect carbon dioxide (CO2). The CO2 is stored as the four-carbon acidmalate, and then used during photosynthesis during the day. The pre-collected CO2 is concentrated around the enzyme RuBisCO, increasing photosynthetic efficiency. Agave and Opuntia are the best CAM Plants.

Agave Competitive Advantages

* Thrives on dry land/marginal land. Most efficient use of soil, water and light
* Massive production. Year-around harvesting
* Very high yields with very low or no inputs
* Very high quality biomass and sugars
* Very low cost of production. Not a commodity, so prices are not volatile
* Very versatile: biofuels, byproducts, chemicals
* World-wide geographical distribution
* Enhanced varieties are ready.

Agave can be grown in huge areas of waste lands in Developing countries like India. Another route of power production is biogas generation from Agave as well as Opuntia. Biogas power generators are commercially available. This way power can be generated at local level with local resources. Both agave and Opuntia are regenerative plants.
In their research paper SARAH C. DAVIS et al conclude:
"Large areas of the tropics and subtropics are too arid or degraded to support food crops, but Agave species may be suitable for biofuel production in these regions. We review the potential of Agave species as biofuel feedstocks in the context of ecophysiology, agronomy, and land availability for this genus globally. Reported dry biomass yields of Agave spp., when annualized, range from 1 to 34Mg /ha/yr without irrigation, depending on species and location. Some of the most productive species have not yet been evaluated at a commercial scale. Approximately 0.6Mha of land previously used to grow Agave for coarse
?bers have fallen out of production, largely as a result of competition with synthetic ?bers.
Theoretically, this crop area alone could provide 6.1 billion L of ethanol if Agave were reestablished as a bioenergy feedstock without causing indirect land use change. Almost one-?fth of the global land surface is semiarid, suggesting there may be large opportunities for expansion of Agave crops for feedstock, but more ?eld trials are needed to determine tolerance boundaries for different Agave species(The global potential for Agave as a biofuel feedstock, GCB Bioenergy (2011) 3, 68–78, doi: 10.1111/j.1757-1707.2010.01077.x)."
Agave and Opuntia are the best choice to grow in waste and vacant lands in Asia,Africa and Latin America.The advantage with the plants is both are regenerative and thrive under harsh conditions.

Another plant of great use is OPUNTIA for biofuel / biogas production.

The cultivation of nopal((OPUNTIA FICUS-INDICA), a type of cactus, is one of the most important in Mexico. According to Rodrigo Morales, Chilean engineer, Wayland biomass, installed on Mexican soil, “allows you to generate inexhaustible clean energy.” Through the production of biogas, it can serve as a raw material more efficiently, by example and by comparison with jatropha.
Wayland Morales, head of Elqui Global Energy argues that “an acre of cactus produces 43 200 m3 of biogas or the equivalent in energy terms to 25,000 liters of diesel.” With the same land planted with jatropha, he says, it will produce 3,000 liters of biodiesel. Another of the peculiarities of the nopal is biogas which is the same molecule of natural gas, but its production does not require machines or devices of high complexity. Also, unlike natural gas, contains primarily methane (75%), carbon dioxide (24%) and other minor gases (1%), “so it has advantages from the technical point of view since it has the same capacity heat but is cleaner, “he says, and as sum datum its calorific value is 7,000 kcal/m3. Javier Snchez et al in their extensive study on Opuntia as potential input for bioethanol concluded:
“Prickly pear is a widely-known crop in the SE of Spain, where it is currently used for forage, fodder and fruit. Now it is being considered as a potential crop for bioethanol production from its whole biomass. In order to estimate the potential bioethanol production in the province of Almeria (SE-Spain) and the optimal location of bioethanol processing plants, a GIS analysis involving a predictive yield model of prickly pear biomass was undertaken following specific restriction criteria. According to this analysis, the total potential bioethanol production in Almeria would be up to 502,927.8 t dm•year–1 from 100,616 ha maximum that could be cultivated with prickly pear, with a calculated yield ranging between 4.2 and 9.4 t dm•ha–1•year–1. An exclusive suitability analysis and a preferable suitability analysis based on the
Analytic Hierarchy Process were performed in order to estimate the optimal location of the subsequent processing plants within Almeria’s road network by a discrete location-allocation model.”(Javier Snchez , Francisco Snchez , Mara Dolores Curt & Jess Fernndez (2012) Assessment of the bioethanol potential of prickly pear (Opuntia ficus-indica (L.) Mill.) biomass obtained from regular crops in the province of Almeria (SE Spain), Israel Journal of Plant Sciences, 60:3, 301-318).
In the developing countries like India which has vast waste land Opuntia can be grown along with Agave for Biofuel/Biogas and subsequent power generation.

On the borders and in big gaps in Solar Farms,Agave and Opuntia can be raised for supplementary power.
Dr.A.Jagadeesh Nellore(AP),India
Renewable Energy Expert
E-mail: anumakonda.jagadeesh@gmail.com

January 24, 2015

U.S. Wind Power Installations Swelled Sixfold in 2014

Excellent.
Though India occupies 5th position in Wind the progress in the Financial year 2014 – 15 is not much. 1333.20 MW Achievement in FY 2014 – 15 and Total Installed capacity at the end of December 2014 stands at 22465.03 MW.
Ministry of New & Renewable Energy
Programme/ Scheme wise Physical Progress in 2014-15 (During the month of December)
Sector FY- 2014-15 Cumulative
Achievements
Target Achievement (as on 31.12.2014)
I. GRID-INTERACTIVE POWER (CAPACITIES IN MW)
Wind Power 2000.00 1333.20 22465.03
Small Hydro Power 250.00 187.22 3990.83
Biomass Power & Gasification 100.00 0.00 1365.20
Bagasse Cogeneration 300.00 152.00 2800.35
Waste to Power 20.00 1.00 107.58
Solar Power 1100.00 430.67 3062.68
Total 3770.00 2104.09 33791.74
II. OFF-GRID/ CAPTIVE POWER (CAPACITIES IN MWEQ)
Waste to Energy 10.00 8.54 141.27
Biomass(non-bagasse) Cogeneration 80.00 34.32 561.64
Biomass Gasifiers
-Rural
-Industrial 0.80 0.75 18.23
8.00 6.20 153.40
Aero-Genrators/Hybrid systems 0.50 0.13 2.38
SPV Systems 60.00 52.77 227.12
Water mills/micro hydel 4.00 2.00 15.21
Bio-gas based energy system 0.00 0.30 4.07
Total 163.30 105.01 1123.32
III. OTHER RENEWABLE ENERGY SYSTEMS
Family Biogas Plants (numbers in lakh) 1.10 0.42 47.95
Solar Water Heating – Coll. Areas(million m2) 0.50 0.53 8.63

The paradox is GRID-INTERACTIVE POWER (CAPACITIES IN MW) was 2104.09 MW while OFF-GRID/ CAPTIVE POWER (CAPACITIES IN MWEQ) 105.01 MW. Family Biogas Plants (numbers in lakh) 0.42 and Solar Water Heating – Coll. Areas(million m2) 0.53
.These achievements are peanuts when there are ambitious plans. This shows the Government is encouraging Big Projects. What is needed in a vast country like ours are Off-grid Renewables energy projects like decentralized energy systems?
There is great scope to go in for Wind Battery chargers(as their efficiency is high compared to solar PV) and most of the multi storied Apartments are highly suitable because of high elevation. For example in Nellore Win battery chargers are working well even in December and January, Normally winds are strong during Southwest Monsoon (May – September) in most parts of the country except in Tmail Nadu which experiences North east Monsoon(December – January). I want to promote vertical as well as horizontal axis Wind Turbines in India and in Nellore (Andhra Pradesh ) to start with. In Mangolia 150,000 Small Wind Turbines work. Another area is adopting small Windmills for lifting water(where water table is not deep). Centro las Gaviotas small water pumping windmills are very efficient and work in medium wind speeds also. In Colombia and other areas in Latin America thousands of small water pumping windmills are working.
Gaviotas tropical windmill

Over nine years, they built 58 different mills. Each contributed in part to the creation of the Dual-Effect Gaviotas MV2E Windmill. Here, for example, was first tested the high-thrust rotor drive now used in all MV2E Gaviotas mills. As many as 800 Model 80 and 1,300 model 81 mills are installed throughout Colombia. They have also been exported to other nations of Asia, Africa and Latin America. In the Gaviotas manufacturing facility in the Vichada Department of Colombia, technicians weekly build hundreds of double-effect windmills, created with the particular characteristics of the Tropics in mind.
Advantages of the Gaviotas 'MV2E' over traditional mills are:
1. it has a weight 10 times lower;
2. its purchase price is considerably lower;
3. it needs three times less wind;
4. it requires no braking during storms; and
5. by following directions, its installation is a simple do-it-yourself project.

Wind Farm Co-operatives and Offshore Wind Farms in India:

I have had been advocating offshore wind energy in India since decade. Today Offshore wind farms operate in Europe, UK topping. In India Onshore Wind farms started in 1985 and today the Wind installations in the country are(Compared to other countries): Installed wind power capacity (MW) up to 2013 end European Union 117,289 China 91,424 United States 61,091 Germany 34,250 Spain 22,959 India 20,150 United Kingdom 10,531 Italy 8,552 France 8,254 Canada 7,803 Denmark 4,772 Portugal 4,724 Sweden 4,470 Offshore Wind Farm installed Capacity(MW) Offshore wind power refers to the construction of wind farms in bodies of water to generate electricity from wind. Better wind speeds are available offshore compared to on land, so offshore wind power’s contribution in terms of electricity supplied is higher,and NIMBY opposition to construction is usually much weaker. However, offshore wind farms are relatively expensive. At the end of June 2013 total European combined offshore wind energy capacity was 6,040 MW. As of 2010 Siemens and Vestas were turbine suppliers for 90% of offshore wind power, while Dong Energy, Vattenfall and E.on were the leading offshore operators. As of October 2010, 3.16 GW of offshore wind power capacity was operational, mainly in Northern Europe. According to BTM Consult, more than 16 GW of additional capacity will be installed before the end of 2014 and the United Kingdom and Germany will become the two leading markets. Offshore wind power capacity is expected to reach a total of 75 GW worldwide by 2020, with significant contributions from China and the United States. As of 2013, the 630 MW London Array is the largest offshore wind farm in the world, with the 504 MW Greater Gabbard wind farm as the second largest, followed by the 367 MW Walney Wind Farm. All are off the coast of the UK. These projects will be dwarfed by subsequent wind farms that are in the pipeline, including Dogger Bank at 9,000 MW, Norfolk Bank (7,200 MW), and Irish Sea (4,200 MW). In the end of June 2013 total European combined offshore wind energy capacity was 6,040 MW. UK installed 513.5 MW offshore wind power in the first half year of 2013. It can be easily seen While UK tops the world in Offshore Wind farms, India has double the capacity of onshore wind farms compared to UK and no offshore wind installations at all. Why? The reasons are not far to seek. There is a strong notion among Indian wind turbine manufacturers, Renewable Energy planners, Government etc. that offshore wind farms cost double to triple the cost of onshore wind farms. How this figure of double or triple arrived at is a billion dollar question. The main charm of offshore wind farms is that the roughness of the sea is zero(no obstacles like onshore) and since power is cube of velocity of wind other factors being linear, higher velocities mean the power shoots up very much. This factor is often overlooked. Moreover instead of going in for onshore wind farms, it will be worthwhile to go offshore nearby to harness more wind power. No doubt the cost of the offshore wind farms will be high compared to onshore because of foundation and cable costs. But these costs are offset by the higher power from offshore wind farms. I wonder how this figure of double or triple arrived at between offshore and onshore wind farms. Has any systematic life cycle study of onshore and offshore wind farms in a region has been carried out? Why not Research Institutes, Wind Industries in UK carry out such a study which will help to dispel the misconceptions on cost of offshore wind farms in India. On 6th February 2014 there was a UK-India Offshore Wind Energy Workshop in Chennai (INDIA) organized by UK Science & Innovation Network , which I attended. I suggested the need for above study and the need for offshore wind farms in India. India has long coast. At least a pilot project can be initiated by Ministry of New and Renewable Energy (MNRE) so that Private Wind farm developers follow suit. Countries like US, China, Taiwan, Korea, France. etc have ambitious plans to go for offshore wind farms. It is sad that India though occupies fifth position in wind in the world is yet to have a offshore wind farm? Also most of the Wind installations in India are from Industrial houses and businessmen. In countries like Denmark,Germany etc. there are Wind Farm Co-operatives. A wind turbine cooperative, also known as a wind energy cooperative, is a jointly owned and democratically controlled enterprise that follows the cooperative model, investing in wind turbines or wind farms. The cooperative model was developed in Denmark. The model has also spread to Germany, the Netherlands and Australia, with isolated examples elsewhere. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater than 100 kW.In India also Wind Farm Co-operatives can be set up with people’s participation. The Government can consider to give tax exemption under Section 80C so that the amount can be invested in Wind Farms with People as share holders.
Hitherto Depreciation and other benefits are given to Big Industries and Buiness Houses who set up Wind Farms. A Renewable Energy Fund can be set up by Government and contributions by Individuals who pay Income Tax can be given a provision to invest in this fund under Section 80C giving Tax Exemption. This way huge funds will be available(each year) for Renewable Energy Projects and there will be mass partnership in Renewable Energy Projects.
On Biogas for Cooking and power generation:
Once India was leading in Biogas production and now China is on the top. For an Agrarian economy,Biogas is ideal for rural areas.
Biogas typically refers to a mixture of different gases produced by the breakdown of organic matter in the absence of oxygen. Biogas can be produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste or food waste. It is a renewable energy source and in many cases exerts a very small carbon footprint.
Biogas can be produced by anaerobic digestion with anaerobic bacteria, which digest material inside a closed system, or fermentation of biodegradable materials.
Biogas is primarily methane (CH4) and carbon dioxide (CO2) and may have small amounts of hydrogen sulphide (H2S), moisture and siloxanes. The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.
The main reason for slow progress of Biogas in India is dwindling animal population. Thanks to nature there are other ways of producing Biofuel and Biogas for cooking and power generation. There are carte-free growth,regenerative CAM plants like Agave and Opuntia which are highly suitable for biofuel/biogas power generation. These can be raised in millions of hectares of wastelands in India. Moreover these plants as carbon Sink. Here is a plan:

BIOFUEL FROM AGAVE/OPUNTIA BEST OPTION COMPARED TO PONGAMIA AND JATROPHA FOR WASTE LANDS

There was much interest in the past on Biodiesel from Pongamia and Jatropha but slowed down.
PONGAMIA PINNATA
Pongam tree aka, Pongamia pinnata, Millettia pinnata, Pongamia, Honge tree, Karanj tree, and Indian Beech tree is a deciduous legume that grows up to about 50 to 80 feet tall and is native to subtropical regions. It is a viable non-toxic alternative to jatropha. Being a legume, it fixes nitrogen into the soil and is often used as a windbreak between fields on farms.
It has a wide spreading canopy making and fragrant flowers making it ideal for ornamental shade applications. The oil is non-edible due to bitter tasting flaveroids. The plant has pharmacutial uses but is not poisionous to the touch like jatropa. It is insect resistant and there is mention of using the presscake as both insectiside and chicken feed.
The plant prefers wet and hot with well drained soil, full sun to partial shade, and temperatures above freezing, as the plants are not cold hardy. A 15ft x 15ft spacing is prefered.
The Asian varieties reach adult height in 4 or 5 years and start bearing seads at 4 to 7 years. It can produce 50 to 100 lbs of seed per tree. Assuming 200 trees per acre, and 25% oil per pound of seed you would get from about 100 to 600 gallons of oil per acre. Genetically modified plants produce more.
The tree is all over India, used to line roadways and waterways. The seeds can be economically picked up from these plants and the oil expelled in presses in local villages for small quanities of oil that can either be added to diesel used by the village or sold for an income. The meal can be used as animal fodder or composted.
Its disadvantage is that the oil may contain high levels of unsoponifable material. More literally, the oil contains stuff that will not turn into biodiesel. Sometimes a lot of stuff that will not turn into biodiesel.
Fatty acid composition:
palmitic, 3.7–7.9%, c16:0
stearic 2.4–8.9, c18:0
arachidic 2.2–4.7, c20:0
behenic 4.2–5.3, c22:0
lignoceric 1.1–3.5, c24:0
oleic, 44.5–71.3, c18:1
linoleic 10.8–18.3, c18:2
eicosenoic 9.5–12.4%. c20:1
But Pongamia trees take time to grow and yield of seeds seasonal.
JATROPHA:
Sometime back there was much talk of Jatropha for Biodiuesel which almost diasappeared now:
My criticism is that Jatropha needs watering and a seasonal crop. It takes minimum 5 years to yield the seeds. Because of Hype many people grabbed thousands of acres of wastelands for lease. How many of them are actually growing Jatropha is a million Dollar question. People want to grow in Millions of hectares of Jatropha crop in Ghana,Medagaskar,Tanzania,Kenya etc. But how much area is covered by Jatropha? I have First hand information of Jatropha in Madagascar.
In India (AP),a Jatropha biodiesel extraction plant was set up but was not a success as there was no regular supply of Jatropha seeds.
Elsewhere there is criticism on Jatropha as it also requires watering like normal plants though in lesser quantity:
As of 2011 skepticism about the "miracle" properties of Jatropha has been voiced. For example: "The idea that jatropha can be grown on marginal land is a red herring", according to Harry Stourton, business development director of UK-based Sun Biofuels, which cultivates Jatropha in Mozambique and Tanzania. "It does grow on marginal land, but if you use marginal land you'll get marginal yields," he said.
An August 2010 article warned about the actual utility and potential dangers of reliance on Jatropha in Kenya. Major concerns included its invasiveness, which could disrupt local biodiversity, as well as damage to water catchment areas.
Jatropha curcas is lauded as being sustainable, and that its production would not compete with food production, but the jatropha plant needs water like every other crop to grow. This could create competition for water between the jatropha and other edible food crops. In fact, jatropha requires five times more water per unit of energy than sugarcane and corn.
1. Reuters: Biofuel jatropha falls from wonder-crop pedestal, 21-1-2011
2. Friends of the Earth Europe: Biofuel 'wonder-crop' jatropha failing to deliver, 21-01-2011
3. "Biodiesel wonder plant could spell doom for Kenya". naturekenya.org.Retrieved 2011-03-22.
4. Friends of the Earth kicks against Jatropha production in Africa, Ghana Business News, Friday, May 29, 2009,
5. Phil McKenna (June 9, 2009). "All Washed Up for Jatropha? The draught-resistant "dream" biofuel is also a water hog".Technology Review. Retrieved 2011-10-11.
Read more: http://forbesindia.com/…/revisting-the-jatropha-de…/36187/1…
BIOFUEL/BIOGAS FOR POWER FROM AGAVE/OPUNTIA:
Agave is a versatile plant well suited for millions of hectares of wastelands in India.
Agave-derived Renewable Fuels, Products and Chemicals
Biofuels
Ethanol(1st and 2nd generations),Biobutanol,biomethanol,biojet fiel,green gasoline,biooil,biocrude,biodiesel,biocoal,biochar,H2,syngas,biogas,torrefied pellets and briquettes, drop-in fuels,pyrolysis oil,and biochar.
Bioproducts
Agave syrup(kosher),Powder inulin,healthy sweetners,far substitute(ice cream),bioplastics,cellulose,paper,acids,CO,CO2,biopolymers,pressed boards,geotextiles,fibres,phenols,adhesives,wax,antifreeze,film(food wrap),fertilisers,insulating foam and panes,gel,pectin,non-wooven material9disposable diapers),mouldings,concrete additive,food additives,composite materials,esters,substitute for asbestos, in fiberglass,hydrocarbons,petrochemical precursors, activated coal,secondary metabolites,detergent,glycols,furfurans,resins,polyurethanes,epoxy,aromatics,olefins,paints and lubricants.
Green electricity
Pellets and briquettes,syn-gas,biooil,biocoal,biogas,biochar,H2 cells,ammonia,and pyrolysis oil.
Co2 Sequestering in the soil
Biochar.
Agave: Competitive Advantages
1. Uses marginal dry-land (41% of the Earth’s surface).
2. Most Efficient use of soil, water and light.
3. Massive production. Year-round harvesting.
4. Very high yields. Very low inputs.
5. Lowest cost of production among energy crops.
6. Not a commodity, so prices are not volatile.
7. Very versatile: biofuels, bioproducts, chemicals.
8. 100 M tonnes established in the 5 continents
9. Enhanced varieties are ready.
Thanks to the wonders of nature,we have Care-free growth,regenerative plants like Agave and Opuntia which can be grown in these waste lands for Biofuel and Biogas for Power generation. Mexico is leader in this.
Agave(Americana),Sisal Agave is a multiple use plant which has 10% fermentable sugars and rich in cellulose. The fibre is used in rope making and also for weaving clothes in Philippines under the trade name DIP-DRY. In Brazil a paper factory runs on sisal as input. A Steroid HECOGENIN is extracted from this plant leaves. Since on putrification,it produces methane gas, it can be cut and used as input in biogas plants. Also in Kenya and Lesotho dried pieces of Agave are mixed with concrete since it has fibres which act as binding.
Biofuel can be produced from Agave. Oxford University study on
agave-to-ethanol: http://pubs.rsc.org/en/content...
“The sustainability of large-scale biofuel production has recently been called into question in view of mounting concerns over the associated impact on land and water resources. As the most predominant biofuel today, ethanol produced from food crops such as corn in the US has been frequently criticised. Ethanol derived from cellulosic feedstocks is likely to overcome some of these drawbacks, but the production technology is yet to be commercialised. Sugarcane ethanol is the most efficient option in the short term, but its success in Brazil is difficult to replicate elsewhere. Agaves are attracting attention as potential
ethanol feedstocks because of their many favourable characteristics such as high productivities and sugar content and their ability to grow in naturally water-limited environments. Here, we present the first life cycle energy and greenhouse gas (GHG) analysis for agave-derived ethanol. The results suggest that ethanol derived from agave is likely to be superior, or at least comparable, to that from corn, switchgrass and sugarcane in terms of energy and GHG balances, as well as in ethanol output and net GHG offset per unit land area. Our analysis highlights the promising opportunities for bioenergy production from agaves in arid or semi-arid regions with minimum pressure on food production and water resources.
“[...] the emissions of agave-derived fuel are estimated to stand at around 35g of CO2 per megajoule from field-to-wheel, compared to the 85g/MJ emitted when
making corn ethanol.”
Dr Tan and his colleagues found this energy balance is five units to one.
“This compares favourably to the highly efficient sugarcane, and to the less efficient corn as a source of biofuel. It also compares favourably to sugarcane-derived ethanol for its ability to offset greenhouse gas emissions, which we calculated at 7.5 tons of CO2e per hectare per year – taking into account the crop’s complete lifecycle”
The main drawback for wider application of Biofuels is input. There was a big movement for biofuel from Jatropha in India but in reality not much has been achieved. Agave(Americana),Sisal Agave is a multiple use plant which has 10% fermentable sugars and rich in cellulose. The fibre is used in rope making and also for weaving clothes in Philippines under the trade name DIP-DRY. In Brazil a paper factory runs on sisal as input. A Steroid HECOGENIN is extracted from this plant leaves. Since on putrification,it produces methane gas, it can be cut and used as input in biogas plants. Also in Kenya and Lesotho dried pieces of Agave are mixed with concrete since it has fibres which act as binding.
Here is an excellent analysis on Agave as a biofuel:
Agave shows potential as biofuel feedstock, Checkbiotech, By Anna Austin, February 11, 2010:
“Mounting interest in agave as a biofuel feedstock could jump-start the Mexican biofuels industry, according to agave expert Arturo Valez Jimenez.
Agave thrives in Mexico and is traditionally used to produce liquors such as tequila. It has a rosette of thick fleshy leaves, each of which usually end in a sharp point with a spiny
margin. Commonly mistaken for cacti, the agave plant is actually closely related to the lily and amaryllis families. The plants use water and soil more efficiently than any other plant or tree in the world, Arturo said. “This is a scientific fact—they don’t require watering or fertilizing and they can absorb carbon dioxide during the night,” he said. The plants annually produce up to 500 metric tons of biomass per hectare, he added.
Agave fibers contain 65 percent to 78 percent cellulose, according to Jimenez. “With new technology, it is possible to breakdown over 90 percent of the cellulose and hemicellulose structures, which will increase ethanol and other liquid biofuels from lignocellulosic biomass drastically,” he said. “Mascoma is assessing such technology.”
ANOTHER PLANT OF MULTIPLE USE IS OPUNTIA FOR BIOFUEL/BIOGAS:
The cultivation of nopal((OPUNTIA FICUS-INDICA), a type of cactus, is one of the most important in Mexico. According to Rodrigo Morales, Chilean engineer, Wayland biomass, installed on Mexican soil, “allows you to generate inexhaustible clean energy.” Through the production of biogas, it can serve as a raw material more efficiently, by example and by comparison with jatropha.
Wayland Morales, head of Elqui Global Energy argues that “an acre of cactus produces 43 200 m3 of biogas or the equivalent in energy terms to 25,000 liters of diesel.” With the same land planted with jatropha, he says, it will produce 3,000 liters of biodiesel.
Another of the peculiarities of the nopal is biogas which is the same molecule of natural gas, but its production does not require machines or devices of high complexity. Also, unlike natural gas, contains primarily methane (75%), carbon dioxide (24%) and other minor gases (1%), “so it has advantages from the technical point of view since it has the same capacity heat but is cleaner, “he says, and as sum datum its calorific value is 7,000
Agave's lower lignin content (down to 2.4%) and higher cellulose content (62%) makes it ideal for production of Biofuel. Agave can be intercropped with Opuntia(Prickly Pear) which will be used to generate biogas for renewable electricity generation. Biogas power generators from KW size to MW size are commercially available from Germany,China,Vietnam etc. The cost of production per Kwh with Opuntia can be as low as US$ 3.00 per million BTU. On an annual basis,one hectare of agave can yield upto ten times the ethanol one hectare of sugarcane in Brazil. Agave to Ethanol's CO2 e emissions are lower than sugarcane and corn.
Water - footprint -- agave does not have any. Agave uses water,light and soil most efficiently amongst plants/trees on earth. Agave is packed with sugars, on an annual basis one hectare of agave yoelds upto 10 thousand gallons of ethanol(from its sap/juice) and 6500 gallons of cellulosic ethanol. No other plant in the World has such potential.
I have a plan: We have SPECIAL ECONOMIC ZONES (SEZ). Just like that we can start YOUTH ECONOMIC ZONES (YEZ). Wastelands can be given to youth on a lease basis(about 10 acres per youth) and 1o such youth can form a co-operative. They can cultivate fast growing multiple use plants like Agave and Opuntia. Power generation plants can be set up at local level. This way there will be decentralised power. This fits in Mahatma Gandhiji's Concept of AGRO INDUSTRIES utilising local resources and resourcefulness. Youth can be given short term training in Agricultural operations. This way we can provide employment to Youth besides bringing waste and vacant land under cultivation.
What is more, large plantations of Agave and Opuntia lead to climate Stability as both are CAM plants. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions. In a plant using full CAM, the stomata in the leaves remain shut during the day to reduce evapotranspiration, but open at night to collect carbon dioxide (CO2). The CO2 is stored as the four-carbon acid malate, and then used during photosynthesis during the day. The pre-collected CO2 is concentrated around the enzyme RuBisCO, increasing photosynthetic efficiency.
Developing countries like ours which have millions of hectares of waste lands can transform rural economy by going in for Agave and Opuntia plantations on a massive scale. As one Exonomist put it, IT IS NOT THE LACK OF RESOURCES BUT RESOURCEFULNESS THAT EXPLAINS WHY PEOPLE PERISH IN THE MIDST OF PLENTY.
Mexico is pioneer in utilising every part of Agave for commercial exploitation. Will India follow? Ours is an agrarian economy. Let us utilise our resources fully so that there will be more rural employment and climate change abatement by providing CAM plants.
In Summary I am not against growing Jatropha nor Pongamia Pinnata but the cost benefit analysis need to be carried out with respect to other options like Agave and Opuntia as far as growing in waste lands is concerned.Both Agave and Opuntia are regenerative plants. As such input is available round the year if planted in different seasons.

Finally Energy Conservation:
Enormous saving in electricity can be achieved in going in for Efficient Electric motors for irrigation, There are about 26 Million Agricultural Electric Motors. Many of them are quite old and inefficient. For Agricultural pump sets the power tariff is nominal or nil in some states. A scheme can be chalked out By both Central and State Governments to replace the old and inefficient agricultural pump sets with efficient ones by giving a subsidy. Electricity is a high grade energy which finds use in Industry,lighting etc. As such it must be judiciously used especially in the agricultural sector. Another area is promoting dual powered Solar Reading Lights.

Energy Conservation
https://www.scribd.com/doc/250077351/Energy-Conservation

In Summary here is an Action Plan for Renewables in India:

1. Promote Offshore Wind Farms.
2. Promote small wind generators as decentralised systems
3. Roof Top PV Solar
4. Creating Renewable Energy Fund. Investment by Income Tax Payers to be exempted under Section 80C.
5. Wind Farm Co-operatives on the lines of those in Germany,Denmark etc.
6. Solar Co-operatives on the lines of those in US.
7. Energy Conservation by replacing most of the inefficient 2.6 million irrigation electric pump sets(About 30% power can be saved). Agriculture consumes much power next only to Industry
8. Reading lights with reliable and quality dual powered(Solar/Electricity/USB) to save enormous energy.
9. Biofuel/Biogas for power generation and cooking from Agave/opuntia care-free growth,regenerative and CAM plants. In China Biogas for cooking is supplied trough pipes.
In the vast vacant land in India Agave and Opuntia can be grown and power generation established as decentralised locally.
10. Simple Box Type Solar Cooker with frying facility( 3D approach,Design,Demonstrate and Disseminate)
11.Cost effective vertical and cylindrical,mobile solar water heater design.
12. Low head Micro hydro device to generate power from the head of falling water from the delivery pipe of Electric/diesel pumpsets.
13. KW size Biogas power/cooking plant for villages.
14. Simple solar drier
15. Growing CAM Plants in Waste and Vacant lands which act as Carbon Sink.
Dr.A.Jagadeesh Nellore(AP) India
Renewable Energy Expert
E-mail: anumakonda.jagadeesh@gmail.com

January 26, 2015

India Clean Energy Investments Rose 13 Percent to $7.9 Billion in 2014

Good but it can be better if not the best.
Dr.A.Jagadeesh Nellore(AP),India
Renewable Energy Expert
E-mail: anumakonda.jagadeesh@gmail.com

January 28, 2015

Microgrids as Fact and Metaphor

Interesting.
Dr.A.Jagadeesh Nellore(AP),India

January 20, 2015

2014 Was a Pivotal Year for Germany's Energiewende

Germany has always been in the forefront in utilising Renewables.
Dr.A.Jagadeesh Nellore(AP),India

January 23, 2015

Er, About That Stunning Improvement in Biofuels Enzyme Performance…

Great Advances in Biofuel Production.
Dr.A.Jagadeesh Nellore(AP),India

January 17, 2015

Wind Must Cut Costs in Face of Cheap Crude

Exactly.
Dr.A.Jagadeesh Nellore(AP),India
Wind Energy Expert

January 16, 2015

Power to the People: Bringing Light to the Darkness in the Developing World

Excellent piece. Congratulations Mike Freni.
Infact I have had been chamopioning the cause and uses of Renewables and Energy conservation for India and other developing countries:

INNOVATIVE RENEWABLE ENERGY SYSTEMS FOR DEVELOPING COUNTRIES:
I have had been advocating offshore wind energy in India since decade. Today Offshore wind farms operate in Europe, UK topping. In India Onshore Wind farms started in 1985 and today the Wind installations in the country are(Compared to other countries): Installed wind power capacity (MW) up to 2013 end European Union 117,289 China 91,424 United States 61,091 Germany 34,250 Spain 22,959 India 20,150 United Kingdom 10,531 Italy 8,552 France 8,254 Canada 7,803 Denmark 4,772 Portugal 4,724 Sweden 4,470 Offshore Wind Farm installed Capacity(MW) Offshore wind power refers to the construction of wind farms in bodies of water to generate electricity from wind. Better wind speeds are available offshore compared to on land, so offshore wind power’s contribution in terms of electricity supplied is higher,and NIMBY opposition to construction is usually much weaker. However, offshore wind farms are relatively expensive. At the end of June 2013 total European combined offshore wind energy capacity was 6,040 MW. As of 2010 Siemens and Vestas were turbine suppliers for 90% of offshore wind power, while Dong Energy, Vattenfall and E.on were the leading offshore operators. As of October 2010, 3.16 GW of offshore wind power capacity was operational, mainly in Northern Europe. According to BTM Consult, more than 16 GW of additional capacity will be installed before the end of 2014 and the United Kingdom and Germany will become the two leading markets. Offshore wind power capacity is expected to reach a total of 75 GW worldwide by 2020, with significant contributions from China and the United States. As of 2013, the 630 MW London Array is the largest offshore wind farm in the world, with the 504 MW Greater Gabbard wind farm as the second largest, followed by the 367 MW Walney Wind Farm. All are off the coast of the UK. These projects will be dwarfed by subsequent wind farms that are in the pipeline, including Dogger Bank at 9,000 MW, Norfolk Bank (7,200 MW), and Irish Sea (4,200 MW). In the end of June 2013 total European combined offshore wind energy capacity was 6,040 MW. UK installed 513.5 MW offshore wind power in the first half year of 2013. It can be easily seen While UK tops the world in Offshore Wind farms, India has double the capacity of onshore wind farms compared to UK and no offshore wind installations at all. Why? The reasons are not far to seek. There is a strong notion among Indian wind turbine manufacturers, Renewable Energy planners, Government etc. that offshore wind farms cost double to triple the cost of onshore wind farms. How this figure of double or triple arrived at is a billion dollar question. The main charm of offshore wind farms is that the roughness of the sea is zero(no obstacles like onshore) and since power is cube of velocity of wind other factors being linear, higher velocities mean the power shoots up very much. This factor is often overlooked. Moreover instead of going in for onshore wind farms, it will be worthwhile to go offshore nearby to harness more wind power. No doubt the cost of the offshore wind farms will be high compared to onshore because of foundation and cable costs. But these costs are offset by the higher power from offshore wind farms. I wonder how this figure of double or triple arrived at between offshore and onshore wind farms. Has any systematic life cycle study of onshore and offshore wind farms in a region has been carried out? Why not Research Institutes, Wind Industries in UK carry out such a study which will help to dispel the misconceptions on cost of offshore wind farms in India. On 6th February 2014 there was a UK-India Offshore Wind Energy Workshop in Chennai (INDIA) organized by UK Science & Innovation Network , which I attended. I suggested the need for above study and the need for offshore wind farms in India. India has long coast. At least a pilot project can be initiated by Ministry of New and Renewable Energy (MNRE) so that Private Wind farm developers follow suit. Countries like US, China, Taiwan, Korea, France. etc have ambitious plans to go for offshore wind farms. It is sad that India though occupies fifth position in wind in the world is yet to have a offshore wind farm? Also most of the Wind installations in India are from Industrial houses and businessmen. In countries like Denmark,Germany etc. there are Wind Farm Co-operatives. A wind turbine cooperative, also known as a wind energy cooperative, is a jointly owned and democratically controlled enterprise that follows the cooperative model, investing in wind turbines or wind farms. The cooperative model was developed in Denmark. The model has also spread to Germany, the Netherlands and Australia, with isolated examples elsewhere. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater than 100 kW.In India also Wind Farm Co-operatives can be set up with people’s participation. The Government can consider to give tax exemption under Section 80C so that the amount can be invested in Wind Farms with People as share holders.

Biofuel/Biogas power from Agave and Opuntia:

Another area which yields immediate results and gainful employment is to grow care-free growth plants like Agave and Opuntia in waste lands. There are millions of hectares of waste lands. In the debate Food Vs Fuel the alternative is to grow plants with multiple uses which have care-free growth. Yet another option is Biofuel from Agave and Biogas from Opuntia and power generation. Agave is a care – free growth plant which can be grown in millions of hectares of waste land and which produces Biofuel. Already Mexico is using it. Another Care free growth plant is Opuntia which generates Biogas. Biogas can be input to generate power through Biogas Generators. Biogas generators of MW size are available from China. Yet another option is Water Hyacinth for biogas. Water Hyacinth along with animal dung can produce biogas on a large scale and then power. In Kolleru lake in Godavari and Krishna Delta in Andhra Pradesh in India it is available in 308 Sq. Km for nearly 8 months in a year. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions In a plant using full CAM, the stomata in the leaves remain shut during the day to reduce evapotranspiration, but open at night to collect carbon dioxide (CO2). The CO2 is stored as the four-carbon acidmalate, and then used during photosynthesis during the day. The pre-collected CO2 is concentrated around the enzyme RuBisCO, increasing photosynthetic efficiency. Agave and Opuntia are the best CAM Plants. Researchers find that the agave plant will serve as a biofuel crop to produce ethanol. "Agave has a huge advantage, as it can grow in marginal or desert land, not on arable land," and therefore would not displace food crops, says Oliver Inderwildi, at the University of Oxford.The majority of ethanol produced in the world is still derived from food crops such as corn and sugarcane. Speculators have argued for years now that using such crops for fuel can drive up the price of food. Agave, however, can grow on hot dry land with a high-yield and low environmental impact. The researchers proposing the plant’s use have modeled a facility in Jalisco, Mexico, which converts the high sugar content of the plant into ethanol. Another plant of great use is OPUNTIA for biogas production. The cultivation of nopal((OPUNTIA FICUS-INDICA), a type of cactus, is one of the most important in Mexico. According to Rodrigo Morales, Chilean engineer, Wayland biomass, installed on Mexican soil, “allows you to generate inexhaustible clean energy.” Through the production of biogas, it can serve as a raw material more efficiently, by example and by comparison with jatropha. Wayland Morales, head of Elqui Global Energy argues that “an acre of cactus produces 43 200 m3 of biogas or the equivalent in energy terms to 25,000 liters of diesel.” With the same land planted with jatropha, he says, it will produce 3,000 liters of biodiesel. Another of the peculiarities of the nopal is biogas which is the same molecule of natural gas, but its production does not require machines or devices of high complexity. Also, unlike natural gas, contains primarily methane (75%), carbon dioxide (24%) and other minor gases (1%), “so it has advantages from the technical point of view since it has the same capacity heat but is cleaner, “he says, and as sum datum its calorific value is 7,000 kcal/m3. In the fields where Jatropha is being grown,Agave and Opuntia can be grown as Inter cropping.

Energy Conservation in Electric Pump sets for Agriculture

Also Energy conservation yields quick results than energy generation. In India Agricultural pumpsets consume power next only to Industry. There are about 26 Million Agricultural Electric Motors. Many of them are quite old and inefficient. For Agricultural pumpsets the power tariff is nominal or nil in some states. A scheme can be chalked out By both Central and State Governments to replace the old and inefficient agricultural pumpsets with efficient ones by giving a subsidy. Electricity is a high grade energy which finds use in Industry,lighting etc. As such it must be judiciously used especially in the agricultural sector.
Often energy studies aim at benefitting the rich but rarely concentrate on poor. A simple example is Box Type Solar Cooker. Box Type Solar Cooker is almost 60 years old. Why it has not taken off especially in a populous country like India? Only 0.6 million Box Type Solar Cookers sold but not used. Technology is culture specific while science is universal. There is no provision for frying in box type solar cooker ,only boiling. One cannot have two cooking systems one for boiling and another for frying. In Innovation theory there are two approaches,Technology Push Vs Demand pull. The Box type solar cookers belong to Technology Push category.
There are small wind mills for water pumping developed by Centro La Gaviotas,Bagota,Colombia. I wonder still why such a fine water pumping windmill has not spread to other countries. I have had been involved in the research and development of Renewables for over 3 decades. Our basic approach is 3D: Design,Demonstrate and Disseminate. We have over 20 Innovative Renewable Energy Gadgets.
I have an action plan for India on Renewables to bring in Rural Prosperity:
1. Promote Offshore Wind Farms.
2. Promote small wind generators as decentralised systems
3. Roof Top PV Solar
4. Creating Renewable Energy Fund. Investment by Income Tax Payers to be exempted under Section 80C.
5. Wind Farm Co-operatives on the lines of those in Germany,Denmark etc.
6. Solar Co-operatives on the lines of those in US.
7. Energy Conservation by replacing most of the inefficient 2.6 million irrigation electric pump sets(About 30% power can be saved). Agriculture consumes much power next only to Industry
8. Reading lights with reliable and quality dual powered(Solar/Electricity/USB) to save enormous energy.
9. Biofuel/Biogas for power generation and cooking from Agave/opuntia care-free growth,regenerative and CAM plants. In China Biogas for cooking is supplied trough pipes.
In the vast vacant land in India Agave and Opuntia can be grown and power generation established as decentralised locally.
10. Simple Box Type Solar Cooker with frying facility( 3D approach,Design,Demonstrate and Disseminate)
11.Cost effective vertical and cylindrical,mobile solar water heater design.
12. Low head Micro hydro device to generate power from the head of falling water from the delivery pipe of Electric/diesel pumpsets.
13. KW size Biogas power/cooking plant for villages.
14. Simple solar drier
15. Growing CAM Plants in Waste and Vacant lands which act as Carbon Sink.

Energy Conservation
https://www.scribd.com/doc/250077351/Energy-Conservation

Put the RENEWABLES to WORK: To get inexhaustible,Pollution- Free Energy which cannot be misused.
Dr.A.Jagadeesh Nellore(AP) India
Renewable Energy Expert
E-mail: anumakonda.jagadeesh@gmail.com

Anumakonda Jagadeesh

Anumakonda Jagadeesh

Dr. Anumakonda Jagadeesh obtained his Bachelors and Masters degrees in Physics from Sri Venkateswara University, Tirupati, Andhra Pradesh, India, and his Doctorate degree in Wind Energy from the prestigious University of Roorkee {now the...

Total Access Partners

Growing Your Business? Learn More about Total Access