The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

c-Si, Thin Films Vie for Solar Cell Market

As the solar energy market continues to grow, crystalline silicon (c-Si) and thin film materials have emerged as leaders in building the most efficient solar panels at the lowest cost. Each of these material systems demonstrated future growth potential in a recent market study done by BCC Research.

Silicon takes the lead

Silicon has been the leading solar cell material since renewable technology began to attract attention. Two major categories of silicon have been used in the manufacture of solar cells—monocrystalline silicon in the form of single wafers made from ingots, and poly- or multicrystalline silicon made from large blocks of molten material carefully cooled and solidified.

Growth and market share of c-Si and thin films, 2010-2015

C:Si technology will represent 42.9% of the module shipments by major technology by 2015.

The material will experience a 34.1% growth rate from 2010 to 2015.

Thin film materials will represent 32.0% of the module shipments by major technology by 2015.

Thin films will experience a 55.7% growth rate from 2010 to 2015.

Source: BCC Research

Monocrystalline silicon proved to be the most efficient but its single wafers are more costly to produce because they are cut from cylindrical ingots. They have registered the highest solar to electric conversion efficiency (25%) of any material. Multicrystalline, or poly-silicon solar cells, while less costly to produce, are a little less efficient averaging 17% to 21%. They are extremely durable however, and over the past several decades, multicrystalline silicon has become the leading material used in solar cells.

Thin films drive lower costs

Thin films found a place in the structure of solar cells as a potential method of reducing cell manufacturing costs. Thin-film solar cells are made by applying very thin layers of semiconductor material to inexpensive materials such as glass or plastic or metal. Thin-film semiconductors absorb light more easily than c-Si, further reducing the amount of material required and thus cutting costs.

At the present time, there are three leading thin film materials used in the manufacture of solar cells. Cadmium telluride (CdTe) has the lowest Wp (Watt-peak) production cost because cells made from this material are relatively easy to manufacture. Efficiencies of CdTe cells range between 9 and 12%.

Copper indium gallium selenide (CIGS) thin films have achieved the highest efficiencies of any thin film material at 12 to 14%. There has been some difficulty in controlling the uniformity of the active layer and in using steel substrates, but research in this material continues at a brisk pace.

Amorphous silicon (a-Si) has also proven to be a workable thin film technology. It has the lowest efficiency, however, registering between 7% and 10% at best. This material has long been used in consumer products powered by the sun such as calculators and watches. Some manufacturers are pursuing its use in solar cells and striving to improve efficiencies.

Gallium arsenide is a fourth thin film material that has been used to manufacture solar cells used in satellites and space exploration. Currently, GaAs is being tested for use in terrestrial solar concentrator and multijunction cells, which offer several different combinations of materials that will absorb solar rays and convert them to electricity.

Manufacturing advantages

Thin films obviously achieve lower efficiencies than crystalline silicon. Over time, however, the overall efficiencies of thin film materials in solar cells have improved and several major manufacturers are focusing on thin films for their major solar cell product lines. Some advances in the manufacturing process and its equipment have added to the potential benefits of both crystalline silicon and thin-film technologies.

Improvements in capex processes have had a positive impact on both c-Si and thin films. Applied Materials, Santa Clara, California, for example, has introduced several deposition systems that are targeted at a more efficient distribution of c-Si and thin films on various substrates. Their latest system fabricates electrical circuits on both sides of a solar cell. Keys to the performance of this new unit are a higher level of precision and control to the cell manufacturing process.

Oerlikon Solar, located in Trübbach, Switzerland, has lowered production costs for solar cells with the introduction of a new ThinFab line. The company credits its ability to make increasingly thinner films with optimized material usage. Oerlikon has dramatically increased the efficiency of thin-film silicon and enabled turn key systems for fabricating thin-film modules.

Both technologies are beneficiaries of improved and highly specialized solar cell fabrication systems. Thin films were originally adopted to lower the cost of solar cells, but crystalline silicon has also become a cost effective and efficient way of producing them.

A close race

The advantages and characteristics of both materials are similar. C-Si and thin films are light in weight, easy to fabricate, amenable to advances in capex processes and have sufficiently high efficiencies to form reliable solar cells. The problem of efficiencies is a source of constant R&D and we have seen improvements over the years. Applications for both materials are increasing daily.

BCC Research analyzed the markets for both c-Si and thin films and arrived at some interesting data, as outlined in Table 1 [1]. Our research indicates that thin films will adapt to the flexible substrate market, which shows greater potential every year. Thin films were only 16.5% of the market in 2009 and will double their growth by the end of our forecast period in 2015.

In the end, it looks as though both technologies will lead in growth over monocrystalline silicon and emerging technologies. C-Si is being used for rooftop applications, as well as other uses, and thin films are proving themselves in building-integrated PV (BiPV) and other power generating applications. Looking out five years, we see a close race between these two PV material technologies and room for both of them. As in so many other fields of electronics, the application will determine the material.

Untitled Document

RELATED ARTICLES

Suntech Parent Company Buys Majority Share of US-based Suniva

Ehren Goossens Shunfeng International Clean Energy Ltd., the Hong Kong-based solar company controlled by billionaire Zheng Jianming,...

Sunrise in Pakistan as the Country Delves into Solar PV

Robert Harker Pakistan has joined the list of countries that are exploring solar power as a means to bridge critical energy generat...

Global Renewable Energy Roundup: China, Kenya, Turkey, India Seeking More Renewables

Bloomberg News Editors China is being encouraged by three industry groups to double the nation’s solar-power goal for 2020 to make up for sh...

Why Smarter Grids Demand Smarter Communications Networks

Mark Madden

Historically, utility networks and communications networks have had little in common.

PRESS RELEASES

OFS Announces Commercial Availability of InvisiLight® MDU Optical Solution for Multiple Dwelling Units

OFS, a leading-edge designer, manufacturer and supplier of innovative fiber optic netwo...

Intersolar AWARD „Solar Projects in India“ – Applications being accepted until September 18

The Intersolar AWARD in the category Solar Projects in India honors projects in the fie...

New local energy partnership brings innovative solar tracker to Washington State

A new partnership will bring the innovative AllEarth Solar Tracker solar electric syste...

30 days to GRC Annual Meeting & GEA Geothermal Energy Expo

The Geothermal Resources Council (GRC) has announced that it is only 30 days to go to t...

FEATURED BLOGS

Cronimet / THEnergy study: In solar for mines size does not always matter - Reducing CAPEX with energy efficiency and load shifting

Munich, September 2015. Mining companies are constantly gaining interest in solar solutions because frequently solar ...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program from

Vacancy? No Problem!

Have you ever tried to sell an efficiency product or service to a prospect that owns or manages a building with high ...

Shedding Some Light on a Taxing Situation for Community-Shared Solar

For renters and for property owners with inadequate roof space, the many benefits of solar electricity may seem out o...

FINANCIAL NEWS

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @jennrunyon

FEATURED PARTNERS



EVENTS

Intersolar North America 2016

Exhibition: July 12 - 14, 2016; Conference: July 11 - 13, 2016 Intersola...

Intersolar Europe 2016

Exhibition: June 22-24, 2016; Conference: June 21-22, 2016 Intersolar Eu...

1-1/2 Day Photovoltaic System Fundamentals Workshop

Participants will learn how to assess the solar resources available at a...

COMPANY BLOGS

Pushing Beyond The Cushion

Efficiency projects are all too often viewed as “optional” o...

Less Is More

When you’re giving a presentation, one of the easiest things to do...

Captivology

One of the biggest challenges we face as efficiency sales professionals ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS