The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Solar Energy Efficiency Gets a Boost

A perspective article published last month by University of California, Riverside chemists in the Journal of Physical Chemistry Letters was selected as an Editors Choice — an honor only a handful of research papers receive. The perspective reviews the chemists’ work on “singlet fission,” a process in which a single photon generates a pair of excited states. This 1->2 conversion process, as it is known, has the potential to boost solar cell efficiency by as much as 30 percent.

Find the article here.

Applications of the research include more energy-efficient lighting and photodetectors with 200 percent efficiency that can be used for night vision. Biology may use singlet fission to deal with high-energy solar photons without generating excess heat, as a protective mechanism.

Currently, solar cells work by absorbing a photon, which generates an exciton, which subsequently separates into an electron-hole pair.  It is these electrons that become solar electricity.  The efficiency of these solar cells is limited to about 32 percent, however, by what is called the “Shockley-Queisser Limit.”  Future solar cells, also known as “Third Generation” solar cells, will have to surpass this limit while remaining inexpensive, requiring the use of new physical processes. Singlet fission is an example of such a process.


Geoffrey Piland (left) is a graduate student working with Christopher Bardeen (right). They are two of the four coauthors of the perspective article. Credit: Barden Lab, UC Riverside.

“Our research got its launch about ten years ago when we started thinking about solar energy and what new types of photophysics this might require,” said Christopher Bardeen, a professor of chemistry, whose lab led the research. “Global warming concerns and energy security have made solar energy conversion an important subject from society’s point-of-view.  More efficient solar cells would lead to wider use of this clean energy source.”

Research details

When a photon is absorbed, its energy takes the form of an exciton inside the material. Bardeen explained that excitons come in two “flavors,” defined by the electron spins in them.  One flavor is singlet, where all spins are paired.  The other flavor is triplet, where two electrons are unpaired.  In organic semiconductors, these two types of excitons have different energies.

“If a triplet exciton has half the energy of a singlet, then it is possible for one singlet exciton, generated by one photon, to split into two triplet excitons,” Bardeen said.  “Thus, you could have a 200 percent yield of excitons — and hopefully, electrons — per absorbed photon.”

He explained that the Shockley-Queisser Limit involves photon absorption to create an exciton, which is basically a bound electron (- charge) and hole (+ charge) pair. In order to get useful electron flow (photocurrent), these excitons must be dissociated. Ideally, one exciton produces one electron (hole) and thus current to run, say, a light bulb.

Singlet fission is a process in which a single photon generates a pair of excited states. This 1->2 conversion process has the potential to boost solar cell efficiency by as much as 30 percent. Credit: Bardeen Lab, UC Riverside.

“To absorb a photon, the photon energy has to be greater than the bandgap of the semiconductor, so you already miss part of the solar spectrum,” Bardeen said.  “But if you absorb a photon with energy higher than the bandgap, it has too much energy, and that excess energy is usually wasted as heat.  The trick is to take that high energy exciton and split the energy into two excitons, rather than dissipating it as heat.”

Bardeen explained that the singlet exciton spontaneously splits into the two triplets, through a mechanism that is still under active investigation.

“The exact mechanism is unknown, but it does happen quickly — at the sub-nanosecond timescale — and with high efficiency,” he said.  “Our work has shown that it is very sensitive to the alignment and position of the two molecules — at least two are required, since we have two excitons — involved in singlet fission. Recent work at MIT has already demonstrated an organic photovoltaic cell with more than 100 percent external quantum efficiency based on this effect.  It may be possible to integrate this effect with inorganic semiconductors and use it to raise their efficiencies.”

Next, Bardeen’s lab will look for new materials that exhibit singlet fission, figure out how to take the triplet excitons and turn them into photocurrent efficiently, and look at how the spin properties of the electrons affect the exciton dynamics.

Untitled Document

RELATED ARTICLES

Welspun Commissions 52-MW Solar Power Plant in India

Vince Font Leading Indian solar developer Welspun Renewables has commissioned the construction of a massive solar plant in the state of Maharashtra. The planned 52-megawatt (MW) solar plant will be located in the city of Baramati. The...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

SkyPower Inks $2.2 Billion Deal for Massive Solar Power Plant in Kenya

Eric Ombok, Bloomberg Kenya’s Energy Ministry and SkyPower Global Ltd. will sign a $2.2 billion agreement on Sunday that paves the way for the Canadian company to develop a 1-gigawatt solar project in East Africa’s biggest economy. The solar pro...

Making a Match: How Solar Companies and Banks Hook Up

Jennifer Runyon The announcements are fairly frequent: SunPower Partners with Admirals Bank for $200 Million Solar Loan Program, Deutsche Bank to Lend $1 Billion for Japanese Solar Projects, Financing Partnerships Drive North Carolina's So...
Iqbal Pittalwala worked at UC Irvine on the journal Geophysical Research Letters before he came to UC Riverside in 2001 as a senior public information officer. From 2003 to 2005 he worked as the assistant director for media relations at UC Irvine ...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Presenting at Infocast's Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

COMPANY BLOGS

Behind Every Good Decision

When something about your business isn’t working, you set out to c...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

An Overwhelming Paradox

I’m sure we’re all very familiar with the feeling of being o...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS