The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Making Life-Cycle Analysis Matter to the Global Solar PV Supply Chain

A new report seeks to bring lifecycle analysis into the equation when calculating the economics of solar PV supply and demand. Now it's up to policymakers and advocates to decide whether this helps inform and resolve, or just fan the flames, of the ongoing trade wars.

The story of solar PV manufacturing today is one of Chinese dominance and the pressures, and allure, of severely low-cost manufacturing. But we shouldn't lose sight of the bigger picture of why we're all fighting for solar and all renewable energy sources in the first place: a cleaner, more responsible energy future. (That's one of the biggest dichotomies about China: its massive renewable energy push is more than offset by its deep reliance on dirtier energy sources.)

"The fact is, we cannot any longer ignore things like carbon footprinting -- especially in the energy space, where we should be the people most aware of the issue," pointed out Seth Darling, scientist with the U.S. Department of Energy's Argonne National Laboratory, co-author of a new study with Northwestern University seeking to close the gap between bottom-line economics and environmental values. "Today it's essentially being ignored."

In their new study to be published in the July issue of the journal Solar Energy, Darling and peers examines the broader impacts of supplying Chinese solar panels to European end-markets. In a nutshell, they find that mainstream Chinese-made silicon solar panels have more than twice the carbon footprint than panels made in Europe, and take up to 30 percent longer to offset the energy used to make them. And that doesn't include transportation costs to get them to Europe, which would magnify the discrepancy even more.

The key is establishing a lifecycle analysis (LCA) for Chinese PV suppliers, something already established for European and North American supply chains but glaringly underinformed for China where there are different and often less-stringent industrial and environmental rules. The team performed a LCA scenario comparing Chinese and European manufacturing of three kinds of silicon-based solar PV technologies, from mining the raw materials through processing into solar panels, and calculated how long each type of panel takes to offset the energy used to make them. (Monocrystalline was found to have the longest energy payback period despite the best energy output; "ribbon" silicon, stringing out the material from a molten bath, created the least efficient material but did so more efficiently and with faster energy payback.)

Carbon footprints of different types of solar panels made in China (CN) vs. Europe (RER). The colors in the bars
represent carbon-emission contributions from the different stages of making a solar panel. Source: Argonne National Labs

The same basic LCA comparison and result would similarly apply between the U.S. and China since U.S. energy mix and environmental regulations are similar, Darling acknowledged, though only a fraction of solar panels are made in the U.S. They didn't explicitly explore that comparison using U.S. data within the scope of this study, though.

The next step after raising the issue of LCA and carbon footprinting is what to do about it. Ultimately these findings point beyond simply advising whether it makes sense to ship panels from China to Europe -- it's about how to assign value to sustainable solar manufacturing, including where it should come from. And that brings the discussion into the ongoing turmoil of regional solar trade conflicts. "The way it's done now, it's Wild West and unfair," Darling said. Policies need to address how to come at the carbon angle, whether by taxing the emitters or placing tariffs on the final products and those who use them. Each has "their own minefields to navigate," he said. Folding their analysis into calculation for the EU/China tariff negotiations, the Argonne/Northwestern team suggests creating a breakeven carbon tariff model of €103-129/ton of CO2, close to reported CO2 capture and sequestration costs, depending on whether and how carbon taxes are finalized by each region. That, the report concludes, "would be a better market- and science-based solution than a solar panel tariff."

Lead image: Global change and Earth climate symbol, via Shutterstock

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now


US Senate Democrats Unveil Energy Bill That Restores PTC and Extends ITC

Brian Eckhouse, Bloomberg Senate Democrats unveiled a bill that would provide more tax credits for renewable energy while killing some tax ince...

US, China Solar PV Players Team Up, Invest $100MM in Chile, Uruguay and Japan

Andrew Burger Private equity infrastructure specialist Hudson Clean Energy Partners and Hong Kong-based independent power producer ...

CEO Gilles: Challenge in Geothermal is to 'Level Playing Field' with Wind, Solar

Jennifer Delony The current challenge for the geothermal energy industry is what U.S. Geothermal CEO Dennis Gilles calls “leveling th...

NRG Energy to Form Renewable Unit, Sell Wind Assets to Yieldco

Mark Chediak and Matthew Monks, Bloomberg NRG Energy Inc., the worst-performing member of the S&P 500 Utilities Index this year, said it will form a renewa...


US Solar Hosts Sierra Club Solar Meeting

This past Monday, US Solar welcomed a new group to its solar training classroom – The S...

US Solar Invited to Speak at Intersolar North America

Intersolar, the largest solar conference and expo in North America is right around the ...

US Solar - Green Planet Festival Highlights Solar Energy and Solar Training This Weekend

US Solar Institute (USSI) is excited to announce that they are the educational sponsor ...

Yaskawa – Solectria Solar Provides Inverters for One of the Largest Professional Sport Stadium PV Systems in North America

Yaskawa - Solectria Solar, a leading U.S. PV inverter manufacturer, announced today tha...


Solar Decathlon 2015 Opens to the Public in California

Today, Oct. 8, the biennial Solar Decathlon opened up to the public at Orange County Great Park in Irvine, ...

ENER-G CHP technology selected for major London housing scheme

ENER-G has been selected to supply combined heat and power (CHP) technology for phase two of the Leopold Estate housi...


Necessity is the mother of innovation. Our planet is going through major changes in climate. This of course will affe...

Georgia Legislature Approves PPA’s, Florida Hoping to Follow

Ah, the sunny south, the land of peaches, oranges and solar potential. I’m talking about Georgia and Florida he...


Jim is Contributing Editor for, covering the solar and wind beats. He previously was associate editor for Solid State Technology and Photovoltaics World, and has covered semiconductor manufacturing and related industries, ...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



Successfully Integrating Solar: A Proactive Approach

•      What does the increasing solar penetrati...

Canadian Solar Inverters Webinar

Canadian Solar is proud to be hosting two free webinars in October! The ...

JuiceBox Energy Certified Installer Class

JuiceBox Energy is rapidly building out its national certified installer...


The Grab Bag Rides Again

Pregame When I was sports editor for the college newspaper, I wrote a co...

How To Speak, How To Listen

As sales professionals, effective communication is paramount to our succ...

Get In The Habit

We all develop habits throughout our lives. Sometimes they’re bene...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now