The World's #1 Renewable Energy Network for News, Information, and Companies.

Researchers Find New Material for Flat Semiconductors

Researchers around the world have been working to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms. But graphene lacks one important characteristic that would make it even more useful: a property called a bandgap, which is essential for making devices such as computer chips and solar cells.

Now, researchers at MIT and Harvard University have found a two-dimensional material whose properties are very similar to graphene, but with some distinct advantages — including the fact that this material naturally has a usable bandgap.

A diagram of the molecular structure of the new material shows how it naturally forms a hexagonal lattice structure, and its two-dimensional layers naturally arrange themselves so that the  openings in the hexagons are all perfectly aligned. Image courtesy of the researchers.

The research, just published online in the Journal of the American Chemical Society, was carried out by MIT assistant professor of chemistry Mircea Dinc? and seven co-authors.

The new material, a combination of nickel and an organic compound called HITP, also has the advantage of self-assembly: Its constituents naturally assemble themselves, a “bottom-up” approach that could lend itself to easier manufacturing and tuning of desired properties by adjusting relative amounts of the ingredients.

Research on such two-dimensional materials, which often possess extraordinary properties, is “all the rage these days, and for good reason,” Dinc? says. Graphene, for example, has extremely good electrical and thermal conductivity, as well as great strength. But its lack of a bandgap forces researchers to modify it for certain uses — such as by adding other molecules that attach themselves to its structure — measures that tend to degrade the properties that made the material desirable in the first place.

The new compound, Ni3(HITP)2, shares graphene’s perfectly hexagonal honeycomb structure. What’s more, multiple layers of the material naturally form perfectly aligned stacks, with the openings at the centers of the hexagons all of precisely the same size, about 2 nanometers (billionths of a meter) across.

In these initial experiments, the researchers studied the material in bulk form, rather than as flat sheets; Dinc? says that makes the current results — including excellent electrical conductivity — even more impressive, since these properties should be better yet in a 2-D version of the material. “There’s every reason to believe that the properties of the particles are worse than those of a sheet,” he says, “but they’re still impressive.”

What’s more, this is just the first of what could be a diverse family of similar materials built from different metals or organic compounds. “Now we have an entire arsenal of organic synthesis and inorganic synthesis,” Dinc? says, that could be harnessed to “tune the properties, with atom-like precision and virtually infinite tunability.”

Scanning electron microscope images show the particles of Ni3(HITP)2 material at various levels of magnification. While the material in this study was in the form of nanoparticles, the analysis show that these particles are actually formed of collections of two-dimensional flakes. Image courtesy of the researchers.

Such materials, Dinc? says, might ultimately lend themselves to solar cells whose ability to capture different wavelengths of light could be matched to the solar spectrum, or to improved supercapacitors, which can store electrical energy until it’s needed.

In addition, the new material could lend itself to use in basic research on the properties of matter, or to the creation of exotic materials such as magnetic topological insulators, or materials that exhibit quantum Hall effects. “They’re in the same class of materials that have been predicted to have exotic new electronic states,” Dinc? says. “These would be the first examples of these effects in materials made out of organic molecules. People are excited about that.”

Pingyun Feng, a professor of chemistry at the University of California at Riverside who was not involved in this work, says the approach used by this team is “novel and surprising,” and that “the quality of this work, from the synthetic design strategy to the probing of the structural details and to the discovery of exceptional electrical conductivity, is outstanding.” She adds that this finding “represents a major advance in the synthetic design of novel semiconducting materials.”

The work was supported by the U.S. Department of Energy and the Center for Excitonics at MIT.

RELATED ARTICLES

Is the Spanish Government Putting the Brakes on Solar PV?

US Capitol

Republicans and Democrats Back Bill to Level the Playing Field for Renewable Energy

Vince Font, Contributing Editor U.S. Senators Chris Coons and Jerry Moran are leading a bipartisan effort to reintroduce tax code legislation aimed at leveling the playing field for renewable energy investment. The Master Limited Partnerships Parity Act w...
Solar thermal desalination

Solar Thermal Desalination Now Underway in Water-hungry California

Susan Kraemer, Correspondent Regional droughts are being exacerbated by climate change, which is mostly caused by what is tasked with bailing them out — fossil fuels. Israel, Australia, and now southern California have all turned to expensive energy-gu...
Memo pad on table

IRS Issues Solar Tax Equity Memo Stating the Obvious

David Burton and Richard Page, Akin Gump On Friday, the IRS issued a heavily redacted Chief Counsel Advice (“CCA”) memorandum, that addresses the intersection of solar investment tax credit partnership flip transactions and the wind production tax credit part...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 3
1505REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

SAP for Utilities

The SAP for Utilities conference is the most comprehensive SAP for Utili...

Training: Preparing for Rule 21 - SPI 2015

What: Rule 21 Training When: September 16th @ 4:30-5:30pm Wher...

Training: NEC 2014, AFDI, & Rapid Shutdown - SPI 2015

What: NEC 2014, AFDI, & Rapid Shutdown When: September 15t...

COMPANY BLOGS

Celebrate Spring With GreenLancer’s Solar Permit Package Special

Spring marks the beginning of solar installation season across much of t...

The Industry 5: A Round Up of Top Solar Stories From February

February saw several big stories in the solar industry. From record-brea...

A Standardized Solar Permitting Process Can Help Cut Soft Costs

The hard costs of solar have dropped in recent years, but the soft costs...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS