The World's #1 Renewable Energy Network for News, Information, and Companies.

Trees Go High-tech: Turning Cellulose into Energy Storage Devices

Based on a fundamental chemical discovery by scientists at Oregon State University, it appears that trees may soon play a major role in making high-tech energy storage devices.

OSU chemists have found that cellulose — the most abundant organic polymer on Earth and a key component of trees — can be heated in a furnace in the presence of ammonia, and turned into the building blocks for supercapacitors.

The chemical process in carbon membranes. Credit: Oregon State University

These supercapacitors are extraordinary, high-power energy devices with a wide range of industrial applications, in everything from electronics to automobiles and aviation. But widespread use of them has been held back primarily by cost and the difficulty of producing high-quality carbon electrodes.

The new approach just discovered at Oregon State can produce nitrogen-doped, nanoporous carbon membranes – the electrodes of a supercapacitor – at low cost, quickly, in an environmentally benign process. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

“The ease, speed and potential of this process is really exciting,” said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science, and lead author on a study announcing the discovery in Nano Letters, a journal of the American Chemical Society. The research was funded by OSU.

“For the first time we’ve proven that you can react cellulose with ammonia and create these N-doped nanoporous carbon membranes,” Ji said. “It’s surprising that such a basic reaction was not reported before. Not only are there industrial applications, but this opens a whole new scientific area, studying reducing gas agents for carbon activation.

We’re going to take cheap wood and turn it into a valuable high-tech product,” he said.

These carbon membranes at the nano-scale are extraordinarily thin — a single gram of them can have a surface area of nearly 2,000 square meters. That’s part of what makes them useful in supercapacitors. And the new process used to do this is a single-step reaction that’s fast and inexpensive. It starts with something about as simple as a cellulose filter paper — conceptually similar to the disposable paper filter in a coffee maker.

The exposure to high heat and ammonia converts the cellulose to a nanoporous carbon material needed for supercapacitors, and should enable them to be produced, in mass, more cheaply than before.

A supercapacitor is a type of energy storage device, but it can be recharged much faster than a battery and has a great deal more power. They are mostly used in any type of device where rapid power storage and short, but powerful energy release is needed.

Supercapacitors can be used in computers and consumer electronics, such as the flash in a digital camera. They have applications in heavy industry, and are able to power anything from a crane to a forklift. A supercapacitor can capture energy that might otherwise be wasted, such as in braking operations. And their energy storage abilities may help “smooth out” the power flow from alternative energy systems, such as wind energy.

They can power a defibrillator, open the emergency slides on an aircraft and greatly improve the efficiency of hybrid electric automobiles.

Besides supercapacitors, nanoporous carbon materials also have applications in adsorbing gas pollutants, environmental filters, water treatment and other uses.

“There are many applications of supercapacitors around the world, but right now the field is constrained by cost,” Ji said. “If we use this very fast, simple process to make these devices much less expensive, there could be huge benefits.”

RELATED ARTICLES

Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid Stability

Anya Breitenbach, NREL Plug-in electric vehicles (PEVs) have the potential to dramatically drive down consumption of carbon-based fuels and reduce greenhouse gas emissions, but the relatively high price of these vehicles — due in large part to th...
Electric vehicles

Innovating Today for the Homes of Tomorrow

David Glickson, NREL Shaping our energy future into one that is efficient, reliable, affordable, and sustainable is a significant undertaking. Much of this effort is focused around the energy industry, utilities, and power grids—which can seem ...
Clean planet

Renewable Energy Responsible for First Ever Carbon Emissions Stabilization

Vince Font, Contributing Editor Carbon emissions in 2014 remained at the previous year’s levels of 32.3 billion metric tons — a milestone that points to the impact worldwide renewable energy investment is having in the face of a 1.5 percent annual increas...
Coal plant

Duke Energy Building Utility-Grade Energy Storage System at Retired Coal Plant

Andrew Burger, Correspondent At the forefront of a rapidly evolving energy landscape, Duke Energy sees promise in using intelligent energy storage systems to enhance the efficiency, stability and resilience of U.S. electricity grids. The nation's large...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 3
1505REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Outage Management for Power Plants

Building on this series’ success, the 14th Annual Outage Managemen...

SAP for Utilities

The SAP for Utilities conference is the most comprehensive SAP for Utili...

Applying Renewable Energy - Online Training

RENAC Online offers a selection of courses on a wide variety of renewabl...

COMPANY BLOGS

Valuing Customer-Sited Solar and Storage: is adding batteries worth...

The concept of adding batteries alongside a utility customer’s sol...

A Baseball Cap, the #ElonEffect, and the Power of a Personal Solar ...

A few weeks ago, I wrote about the Elon Effect in relation to Tesla...

Make Mom Care: A Solar Industry Commencement Speech for the Class o...

Friends, faculty, parents, and graduates of 2015. I’m honored not ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS