The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

A Cold Short-cut to CO2 Energy Storage

All over the world, scientists are on the hunt for solutions that will allow CO2 to be captured from large power stations and industrial plants. Many of the methods in use today employ chemicals or advanced materials to extract CO2 from flue-gases. But now, a chilly alternative is showing signs of heating up.

When CO2-rich gases are compressed and refrigerated, the carbon dioxide turns into a liquid — like steam on a cold bathroom mirror — and can be drawn off. Calculations performed by SINTEF, the largest independent research organisation in Scandinavia, suggest that in many cases, this method is cheaper and less energy-intensive than competing capture methods, in spite of predictions that the opposite would turn out to be true. This is good news for everyone who hopes that Europe will soon start to implement carbon capture and storage (CCS).

Core participants in the “Cold CO2 Capture” project discuss their results. From the left; chief scientist Petter Nekså, research scientist Kristin Jordal and David Berstad, MSc, all of SINTEF Energy Research. Credit: Thor Nielsen, SINTEF.

“CO2 captured in liquid form can be loaded straight aboard a vessel and be transported to offshore storage sites before pipelines have been laid. If our findings open up the possibility of cold CO2 capture, they could help to bring forward the introduction of CO2 storage beneath the North Sea,” says SINTEF research scientist Kristin Jordal.


The scientists estimate that cold technology could cut the energy consumption and cost of CO2 capture by as much as 30 per cent in one of the “green” coal-fired power stations that the world is currently sniffing at.  The SINTEF scientists believe that the method will also be suitable for capturing CO2 when hydrogen is separated out of natural gas, as well as in cement, iron and steel production.

“We started to do these calculations out of sheer curiosity in the course of the European Union project DECARBit. Many people doubted whether refrigeration technology would save energy and costs in this context, and the project therefore scarcely passed through the needle’s eye in Brussels. But once we were given the green light, we were able to show that there are a number of important potential improvements to be made in the process. That said, cold CO2 capture turned out to be one of the most promising technologies,” says Jordal, although she emphasises that more research is needed before the answers can be regarded as final.

She and her colleagues find the results particularly satisfying in view of the low expectations that many commentators had ahead of the project.

Stumbled on Discovery

Sometimes it can be a good idea to test unlikely hypotheses. When the scientists first realised that the cold technology was promising, they almost missed the next, and perhaps most important, point.

As Jordal points out: “None of us who are working on CO2 capture thought of shipping when we started, but when my colleague Simon Roussanaly who works on CO2 transport saw the process, he immediately pointed out that low-temperature CO2 capture would give us liquid CO2, at just the temperature and pressure needed to load it on board a ship. It was almost too good to be true!.”

First Ships, Then Pipelines

Until now, it has usually been regarded as most cost-effective and energy-efficient to send gaseous CO2 to its storage site by pipeline. This is because most of today’s CO2 capture technologies separate it out as a gas.

“However, it can take a long time to get all the decisions regarding CO2 transport pipelines in place. Will individual actors need to invest in small pipelines, or wait until several of them can agree to build a large one? By capturing CO2 in the state of a chilled liquid, we could start shipping it out while discussions about pipelines are still on-going,” says Jordal.

She points out that it would be quite possible to design cold capture processes in such a way that they could relatively easily be modified in the future; from delivering liquid CO2 for shipping, to supplying it as a gas at the high pressure needed to transport it by pipeline.

“This could enable us to gradually develop CCS in the North Sea,” says Kristin Jordal.

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now


Meeting the Need for Uniform Energy-Storage Codes, Standards and Regulations

Michael A. Stosser and Kyle E. Wamstad The energy-storage industry is now at a stage where stakeholders need to develop a coordinated vision for safety code...

DOE Releases Final Programmatic Environmental Impact Statement for Hawaii

Jennifer Delony DOE released a final programmatic environmental impact statement for Hawaii to provide federal, state and county gove...

The 800 Ways Taxpayer Money Supports Fossil Fuel Industries

Reed Landberg, Bloomberg As world leaders converge on New York for a United Nations gathering that’s expected to have a strong emphasis on cli...

Southern to Test and Evaluate 1 MW Battery Project in Georgia

Wayne Barber Southern Company said on Sept. 17 that it will test and evaluate a 1 MW (2-MWh) battery storage system in Cedartown, ...


Sun Xtender® Launches New Website at

The newly designed website for Sun Xtender solar batteries is now live on the World Wid...

Power Engineering and Renewable Energy World Magazines Name Projects of the Year Awards Finalists

Tulsa, Okla. and Nashua, N.H., Oct. 5, 2015 -- The editors of Power Engineering and Ren...

Canadian Solar Closes Purchase of Ontario Assets from KKR

Canadian Solar Purchased 3 Solar Power Plants Totaling 59.8 MW AC from KKR

Array Technologies Finalizes Shipments to E.ON’s Maricopa West Solar Project

Array Technologies, Inc. (ATI) has completed DuraTrack® HZ shipments to the 20 MW (ac) ...


energy efficiency

Beyond the Trend: Maximizing the Impact of Your Energy Efficiency Solution

A revolution is happening in the energy sector. From the new regulations pushed out earlier this summer by the EPA’s ...

Northeast States Create Cap-and-Trade Program for Greenhouse Gas Emissions

Northeast states have worked together for several decades to address air quality issues and, more recently, climate c...

Why the Solar PV Industry Should Love Geothermal Heat Pumps Pt 2

It’s a marriage made in heaven: Solar PV and Geothermal Heat Pumps Part 2 of a 6-Part Series Prevailing Heati...

The Whirlwind Known As Tradeshow Season 2015

Wow. What a tradeshow season 2015 is turning out to be! Hot on the heels of Intersolar and SPI, next week we’re...



Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



JuiceBox Energy Certified Installer Class

JuiceBox Energy is rapidly building out its national certified installer...

Energy Storage North America

Energy Storage North America (Oct 13-15, 2015, in San Diego, California)...

6th Annual Europe Electricity Ancillary Services and Balancing Forum

Ensuring a smarter electricity market for efficient operations within a ...



One of the biggest challenges facing supermarket proprietors is managin...

6 Practical benefits of solar energy storage

Today, energy storage systems make up roughly two percent of U.S. genera...

Why Electric Utilities Love Geothermal

When it comes time to think about replacing the heating and cooling syst...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now