The World's #1 Renewable Energy Network for News, Information, and Companies.

Guessing Game: Tesla's Gigafactory and Energy Storage Aims

Tesla made a splash last week with its proposed $5 billion "Gigafactory" and its eye-popping numbers: a 10 million square foot facility on an entire land area of 500-1,000 acres, with output of 35 GWh/year of battery cells and 50 GWh/year of battery packs by 2020. That'll be enough to support 500,000 of the company's forthcoming Gen-3 vehicles, compared with a little over 20,000 annual demand for its cars today. By comparison, the entire lithium-ion battery supply-chain produced about 34 GWh in 2013, the vast amount going not to electric vehicles but consumer electronics.

That's a very big bet on future demand, so it makes sense for Tesla to have other plans in case the market doesn't quite take off and it's stuck with overcapacity. The answer: allocate some of that capacity to stationary energy storage systems for backup power, peak demand reduction, demand response, and wholesale electric market services. Speaking at a California Public Utilities Commission thought-leader panel, Musk reiterated that an unspecified amount of Gigafactory's capacity will be earmarked for "large-scale use of stationary storage." Since last year Tesla has been contributing batteries to SolarCity for incorporation into solar + energy storage systems for both residential and commercial customers. (Expansion of solar and wind, Musk added, is causing "strife" for existing utilities.)

The key to Gigafactory, for either cars or stationary storage applications, is in its sheer scale which is hoped to compress costs right from the start. Tesla says it will reduce battery pack cost/kWh by more than 30 percent by the time its third-generation vehicles ramp in 2017. Battery systems for stationary energy storage applications are a bit different -- air-cooled, a simpler battery management system, and it's all around a lot cheaper. It's not uncommon among Asian manufactures to have multiple variations of a battery cell coming off individual lines, pointed out Sam Jaffe, senior research analyst at Navigant Research. There's also the possibility that the company could tweak its battery chemistry used in Gigafactory, though probably still a variant of lithium-ion. A Tesla spokesperson declined to comment on any Gigafactory specifics.

Credit: Tesla

Nor did the company explain the proposed gap between Gigafactory's 35 GWh in annual battery cell output vs. 50 GWh in battery packs. There hasn't been any confirmation of who Tesla's major partners will be in this new Gigafactory, but it's widely assumed that longtime battery cell partner Panasonic will be in, and maybe bring some of its supply-chain friends. Tesla and Panasonic have a long and deep connection, almost to the point of mutual codependency; it's the opposite of typical multi-sourcing strategy seen in other industries, and it's hard to imagine it *not* continuing with this Gigafactory. On the other hand, it's possible that Tesla is smartly keeping its cell supplier options open, in the belief that sheer volume will override its need to slash costs and dent suppliers' margins. "That's a really fine line to walk," Jaffe observed.

There's another angle here relevant to renewable energy: Tesla says it wants to "heavily power" the new factory with solar and wind. Battery manufacturing is very energy-intensive, running ovens and manufacturing equipment and charging the batteries at least one cycle as a final step, explained Jaffe. That equates to usage in the hundreds of megawatts. A drawing in the slide presentation shows both solar and wind farms located adjacent to the factory. One also could speculate that they could achieve that by purchasing RECs or by investing Google-style in someone else's developments.

Where to put this massive factory is still being decided, but the shortlist is Texas, Arizona, New Mexico, and Nevada. The San Jose Mercury News' Dana Hull neatly handicapped the field and lists some advantages: the company's previous facilities-tirekicking in Arizona and New Mexico, proximity to rail and possibly Apple and some other energy-storage-hungry industries.) Certainly those U.S. Southwest locations favor solar energy; overlaid with strong wind energy areas might narrow that a bit further. Gigafactory construction is pledged to begin by this fall according to those same slides; it's not clear whether that includes the solar/wind contribution. Such utility-scale projects don't simply materialize in a couple of months, however, so one could speculate that a factor in Gigafactory's final location selection might be siting near existing projects or ones already well down the development path.

Lead image: Vanderwolf images via Shutterstock

RELATED ARTICLES

Electric vehicles

Innovating Today for the Homes of Tomorrow

David Glickson, NREL Shaping our energy future into one that is efficient, reliable, affordable, and sustainable is a significant undertaking. Much of this effort is focused around the energy industry, utilities, and power grids—which can seem ...
Clean planet

Renewable Energy Responsible for First Ever Carbon Emissions Stabilization

Vince Font, Contributing Editor Carbon emissions in 2014 remained at the previous year’s levels of 32.3 billion metric tons — a milestone that points to the impact worldwide renewable energy investment is having in the face of a 1.5 percent annual increas...
Coal plant

Duke Energy Building Utility-Grade Energy Storage System at Retired Coal Plant

Andrew Burger, Correspondent At the forefront of a rapidly evolving energy landscape, Duke Energy sees promise in using intelligent energy storage systems to enhance the efficiency, stability and resilience of U.S. electricity grids. The nation's large...

How New York is Using Local Power & Microgrids To Transform the State

Roy Hales, Contributor New York’s antiquated infrastructure was in trouble long before hurricane Sandy. The bulk power system, designed to meet a peak demand 75 percent higher than most of America, is underutilized most of the day. New Yorkers ha...
Jim is Contributing Editor for RenewableEnergyWorld.com, covering the solar and wind beats. He previously was associate editor for Solid State Technology and Photovoltaics World, and has covered semiconductor manufacturing and related industries, ...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 3
1505REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Outage Management for Power Plants

Building on this series’ success, the 14th Annual Outage Managemen...

SAP for Utilities

The SAP for Utilities conference is the most comprehensive SAP for Utili...

Training: Preparing for Rule 21 - SPI 2015

What: Rule 21 Training When: September 16th @ 4:30-5:30pm Wher...

COMPANY BLOGS

What Is a Solar PPA And How Does It Work?

When talking about solar financing, the solar power purchase agreement (...

Solar Concept Designs Make Interconnection Easy

Interconnection can be a lengthy, sometimes frustrating process. The ave...

Three Reasons the Solar ITC Should Be Extended

There’s a lot of debate in the solar world right now about whether...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS