The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass

Although low temperature fuel cells powered by methanol or hydrogen have been well studied, existing low temperature fuel cell technologies cannot directly use biomass as a fuel because of the lack of an effective catalyst system for polymeric materials.

Now, researchers at the Georgia Institute of Technology have developed a new type of low-temperature fuel cell that directly converts biomass to electricity with assistance from a catalyst activated by solar or thermal energy. The hybrid fuel cell can use a wide variety of biomass sources, including starch, cellulose, lignin — and even switchgrass, powdered wood, algae and waste from poultry processing. 

A new solar-induced direct biomass-to-electricity hybrid fuel cell can operate on a variety of fuels. The fuel cell, shown on the right, relies on a polyoxometalate (POM) catalyst (shown in the vials) which changes color as it reacts with light. Credit: Georgia Tech Photo: John Toon

The device could be used in small-scale units to provide electricity for developing nations, as well as for larger facilities to provide power where significant quantities of biomass are available. 

“We have developed a new method that can handle the biomass at room temperature, and the type of biomass that can be used is not restricted — the process can handle nearly any type of biomass,” said Yulin Deng, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering and the Institute of Paper Science and Technology (IPST). “This is a very generic approach to utilizing many kinds of biomass and organic waste to produce electrical power without the need for purification of the starting materials.”

The new solar-induced direct biomass-to-electricity hybrid fuel cell was described February 7, 2014, in the journal Nature Communications.

The challenge for biomass fuel cells is that the carbon-carbon bonds of the biomass — a natural polymer — cannot be easily broken down by conventional catalysts, including expensive precious metals, Deng noted. To overcome that challenge, scientists have developed microbial fuel cells in which microbes or enzymes break down the biomass. But that process has many drawbacks: power output from such cells is limited, microbes or enzymes can only selectively break down certain types of biomass, and the microbial system can be deactivated by many factors.

Deng and his research team got around those challenges by altering the chemistry to allow an outside energy source to activate the fuel cell’s oxidation-reduction reaction.

In the new system, the biomass is ground up and mixed with a polyoxometalate (POM) catalyst in solution and then exposed to light from the sun – or heat. A photochemical and thermochemical catalyst, POM functions as both an oxidation agent and a charge carrier. POM oxidizes the biomass under photo or thermal irradiation, and delivers the charges from the biomass to the fuel cell’s anode. The electrons are then transported to the cathode, where they are finally oxidized by oxygen through an external circuit to produce electricity. 

“If you mix the biomass and catalyst at room temperature, they will not react,” said Deng. “But when you expose them to light or heat, the reaction begins. The POM introduces an intermediate step because biomass cannot be directly accessed by oxygen.” 

This schematic illustration shows the solar-induced direct biomass-to-electricity hybrid fuel cell. Electrons in the biomass can be transferred to polyoxometalate (POM) under sunlight irradiation, and reduced POM can deliver the charges to the anode. These electrons are then captured by oxygen in the cathode.

The system provides major advantages, including combining the photochemical and solar-thermal biomass degradation in a single chemical process, leading to high solar conversion and effective biomass degradation. It also does not use expensive noble metals as anode catalysts because the fuel oxidation reactions are catalyzed by the POM in solution. Finally, because the POM is chemically stable, the hybrid fuel cell can use unpurified polymeric biomass without concern for poisoning noble metal anodes.

The system can use soluble biomass, or organic materials suspended in a liquid. In experiments, the fuel cell operated for as long as 20 hours, indicating that the POM catalyst can be re-used without further treatment.

In their paper, the researchers reported a maximum power density of 0.72 milliwatts per square centimeter, which is nearly 100 times higher than cellulose-based microbial fuel cells, and near that of the best microbial fuel cells. Deng believes the output can be increased five to ten times when the process is optimized.

“I believe this type of fuel cell could have an energy output similar to that of methanol fuel cells in the future,” he said. “To optimize the system, we need to have a better understanding of the chemical processes involved and how to improve them.”

The researchers also need to compare operation of the system with solar energy and other forms of input energy, such as waste heat from other processes. Beyond the ability to directly use biomass as a fuel, the new cell also offers advantages in sustainability — and potentially lower cost compared to other fuel cell types.

“We can use sustainable materials without any chemical pollution,” Deng said. “Solar energy and biomass are two important sustainable energy sources available to the world today. Our system would use them together to produce electricity while reducing dependence on fossil fuels.”

Untitled Document

RELATED ARTICLES

US Clean Power Plan Could Include Carbon Trading

Mark Drajem, Bloomberg Some businesses that back President Barack Obama’s plan to curb greenhouse gases are making a late lobbying push to add an element similar to a cap-and-trade program. With the administration set this week or next to unveil ...

Listen Up: Vampires Sucking Power from your House

The Energy Show on Renewable Energy World Here’s a nightmare for you: at night, when you’re asleep and you think things are quiet, there are vampires sucking power out of your house and increasing your electric bill. The fact of the matter is that every plugged in ...

Energy Storage and Geothermal Markets Look To Team Up in the Hunt for Lithium

Meg Cichon In today's fast-paced tech environment, no one can make a splash quite like Elon Musk. So when he decided to enter the energy storage game in 2014, he did it with gusto. Musk is now in the process of building what he coined...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Grid-connected and Off-grid Photovoltaics

This training covers all aspects of planning, installation, maintenance,...

2015 Green Energy Expo

Stop by and visit Canadian Solar at the Green Energy Expo in Mexico City!

2015 Intersolar-South America

Canadian Solar will be exhibiting @ Intersolar-South America. Stop by an...

COMPANY BLOGS

Do Your Goals Match Your Values?

Before you set goals for your company or your personal work performance ...

LSX rises with sustainable wine making in Mexico

his custom LSX solar canopy shades the upper deck organic gard...

A Networking Story

When you’re at a networking event and you meet someone who works i...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS