The World's #1 Renewable Energy Network for News, Information, and Companies.

Mapping the United States' Wind Turbines

Wind energy is one of the fastest-growing sectors of renewable energy in the United States. About 3% of the total electricity in the United States was generated by wind turbines in 2012 (according to the U.S. Energy Information Administration), which is equivalent to the annual electricity use for about 12 million households. The amount of electricity generated by wind has increased from about 6 billion kilowatt hours (kwh) in 2000 to 140 billion kwh in 2012.

In response to the Department of Interior’s Powering Our Future initiative, the U.S. Geological Survey (USGS) has begun investigating how to assess the impacts of wind energy development on wildlife at a national scale.

Wind generates electricity by turning the blades of turbines. Individual turbines can range in height from several dozen to several hundred meters tall, with blade lengths measuring several dozen meters.

Assessment Experience

The USGS has extensive experience assessing energy resources, and it’s that expertise that makes the USGS qualified to assess nationwide impacts of wind energy development. One of the major reasons behind the success of USGS energy resource assessments is the scientifically robust methodology that underpins them.

USGS energy resource assessment methodologies are publicly available and are technically peer reviewed externally, and just as importantly, are used consistently in every assessment. That means that a USGS oil and gas assessment in Alaska provides comparable information to a USGS oil and gas assessment in Texas, or that a USGS geothermal assessment in California is comparable to a USGS geothermal assessment in Nevada.

A Different Kind of Assessment

USGS has recently undertaken a project to develop a methodology for assessing wind energy impacts on wildlife at a national scale. This research is different from previous USGS energy assessments. Instead of looking at technically recoverable resources of oil, gasgeothermal orcoal, or even technically accessible storage areas for carbon sequestration, the USGS is developing a method for determining the impacts of a type of energy production. This work will merge the experience the USGS has creating assessment methodologies with its expertise in wildlife ecology and wind-wildlife research, as well as in land change science.

Wind energy can impact both wildlife and their habitats. Wildlife impacts include potential bird and bat mortality from collisions with turbine blades, and in some cases, species avoidance of habitat near turbines. Habitat impacts include the turbine pads in addition to service roads, transmission lines, substations, meteorological towers, and other structures associated with wind energy siting, generation, and transmission.

Turbine Locations

The first step in understanding the impact of wind energy development is to determine where the wind turbines are located. Prior to this study, there was no publicly available national-level data set of wind turbines. There were maps that showed turbines locations  in a few states, and there were national-level maps that showed wind power facilities, but not individual turbines, or information about  those turbines, such as height, blade length, or energy producing capacity.

A screenshot of the USGS WindFarm Mapping Application, which allows users to access the more than 47,000 individual wind turbines contained within the national wind turbine database. This view shows facilities in Southern California, color-coded for their wind-generating capacity. The red and yellow turbines have a higher electricity-generating capacity than the green and blue turbines do. Click the map to get started!

To remedy the lack of information, the USGS created this publicly available national dataset and interactive mapping application of wind turbines.  This dataset is built with publicly available data, as well as searching for and identifying individual wind turbines using satellite imagery. The locations of all wind turbines, including the publicly available datasets, were visually verified with high-resolution remote imagery to within plus or minus 10 meters.

Knowing the location of individual turbines, as well as information such as the make, model, height, area of the turbine blades, and capacity creates new opportunities for research, and important information for land and resource management.  For example, turbine-level data will improve scientists’ ability to study wildlife collisions, the wakes causes by wind turbines, the interaction between wind turbines and ground based radar, and how wind energy facilities overlap with migratory flyways.

Next Steps

In addition to the value this powerful tool has to Federal and State land managers, non-governmental organizations, the energy industry, scientists, and the public, it will be a useful component in the methodology that the USGS is developing for assessing wind energy impacts. The USGS is bringing together scientists with expertise in landscape-level science, wildlife biology, and other associated disciplines to create the methodology. Once developed, the methodology will be externally peer-reviewed and tested with pilot-level data projects. Once peer reviewed, the revised methodology will be published for others to understand and use.


Renewable Energy Finance

Clean Energy ETFs Are on a Tear

Eric Balchunas, Bloomberg Green investing used to be synonymous with losing money. But while the S&P 500 Index is up 2 percent this year, and the MSCI All-Country World Index is up 5 percent, clean energy ETFs have double-digit re...

Wheels, Towers and Trees: Unconventional Renewable Energy Technologies in the Pipeline

Andrew Williams, International Correspondent A number of companies around the world are developing novel technologies in an effort to grab a slice of the global renewable energy market.  Although many of these technologies are simple incremental improvements to e...
UK Parliament Clean Energy Leaders

UK Government Names Clean Energy Cabinet Members

David Appleyard, Contributing Editor With the UK general election now over and a majority Conservative Party government in place, the re-elected Prime Minister David Cameron has now named key members of the government charged with steering the UK’s clean energ...

Coast to Coast and Across the Electric System, Microgrids Provide Benefits to All

Dick Munson, Environmental Defense Fund At the most obvious level, microgrids could disrupt today’s utilities and their regulated-monopoly business model, because they challenge the centralized paradigm. In a nutshell, microgrids are localized power grids that ha...


Volume 18, Issue 3


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @megcichon @jennrunyon



Doing Business in Brazil – in partnership with GWEC, the Global Win...

Brazil is one of the most promising markets for wind energy.  Ranke...

Energy Storage USA 2015

Energy Storage USA is the leading conference in the United States focuse...

Wind Power Central America

Wind power projects are expected to reach 46GW of total installed capaci...


SunEdison Expands Residential Market Offerings with New PPA, Sales ...

SunEdison has largely focussed on the commercial and utility-scale solar...

Deadline for Inclusion in Solar Power World's Top Solar Contractors...

UPDATE: The official deadline for the Solar Power World T...

Are You Ready for a Natural Disaster?

Guest post by Jenna Clarke  Living in the Shenandoah Valley of Virg...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now