The World's #1 Renewable Energy Network for News, Information, and Companies.

PV Integration Feasible at Low Cost

Analysis and quantification of PV system integration costs in key European markets shows that the widespread penetration of PV power in Europe between 2020 and 2030 can be accommodated at a relatively modest cost.

Published under the rubric of the European PV Parity project, the authors of the report – from Imperial College, London – confirm the feasibility of installing up to 480 GW of PV by 2030, covering about 15 percent of the European electricity demand. The report claims to show that not only it is technically feasible, but also that the costs of implementing the necessary system integration measures are comparatively small.

The PV Parity project is a joint effort between partners such as WIP - Renewable Energies, of Germany, the European Photovoltaic Industry Association (EPIA) and utility groups including ENEL and EdF Energies Nouvelles. The project considers 11 EU countries – Austria, Belgium, Czech Republic, France, Germany, Greece, Italy, the Netherlands, Portugal, Spain and the United Kingdom – with the aim of PV competitiveness at the lowest possible price.

Large scale solar project

As well as looking at a number of different European nations, the analysis also considers the various cost components which make up the overall expenditure on integration of PV. These include the transmission and distribution costs, provision of back-up or spinning reserve and the requirement for balancing services.

One of the major findings is the wide variation in the cost of back-up capacity. In Northern Europe, where costs of around €14.5/MWh have been estimated, the lower ability of PV to displace conventional generation capacity impacts on the costs of back-up power, the authors argue. This compares with Southern Europe where these costs are lower and may even be negative when there is a strong correlation between PV output and peak demand.

According to the study, the second major cost component of PV integration is the distribution network cost. The analysis concludes that reinforcing distribution networks to accommodate PV would cost about €9/MWh by 2030. This cost usually reduces when peak consumption coincides with peak PV production, as it would be the case in Southern Europe, the report highlights.

Further concluding that the ability of an isolated system to integrate large amount of renewables is limited, the authors note that a strong interconnected system will benefit from a diversity of sources and loads, which will in turn facilitate more efficient integration.

Another important result of the analysis is that transmission cost linked to the integration of 480 GW PV by 2030 remains modest. In 2020 the cost is estimated at around €0.5/MWh, increasing to €2.8/MWh by 2030.

The impacts of PV on distribution network losses have also been investigated. At low penetration levels of up to 10 percent, PV connected at distribution networks is likely to reduce distribution network losses. Beyond this level, the trend starts to reverse, though the threshold varies from country to country.

Again, Southern Europe – where peak demand coincides with PV output – is likely to have a higher threshold, the report concludes. The savings that PV brings in reducing the losses are estimated to be between €2.5/MWh and €5.6/MWh of PV output which can partially compensate for the other grid integration costs. However, the savings diminish with the increased penetration of PV, the analysis continues.

Balancing costs are another component considered in the study. Costs reflect the fact that more generators run part-loaded to provide additional balancing services and reserves due to the uncertainty in PV generation production. However this cost will remain modest, at around €1/MWh by 2030, assuming full integration of an EU balancing market.

Overall, the study concludes that system integration cost of PV is relatively low, increasing to around €26/MWh by 2030.

The report also demonstrates that the application of Demand Response (DR) or storage solutions can be effective to reduce the integration cost of PV, which could potentially decrease by 20% as a result.

Lead author Dr Danny Pudjianto, of Imperial College’s Energy Futures Lab,  explains that, compared with the projected costs of energy in 2030 and including a carbon component, this remains a modest expense.

 

Image: A grid-connected solar PV project: David Appleyard

RELATED ARTICLES

First Anniversary of The Balkan Floods Highlights Renewable Energy Market Opportunities

Ilias Tsagas, Contributor One year ago this month, severe flooding in Serbia, Bosnia-Herzegovina and Croatia killed 79 people, displaced about half a million and caused economic paralysis of the region. In the wake of these the catastrophic events, ...
Canadian Climate Goals

Canada Announces Weak Climate Target

Danielle Droitsch, NRDC Last week, Canada has announced its contribution to the global effort to reduce greenhouse gases by announcing its post-2020 target. The target announced today is off-track to the 80 percent cut by 2050 they committed to in...
Renewable Energy Stocks

What Drives Alternative Energy Stocks?

Harris Roen, The Roen Financial Report Alternative energy became a serious market player after the turn of the millennium. Since that time, solar, wind, smart grid and other alternative energy stocks have experienced both strong up and down trends. The forces at...
Rooftop Solar Panels

Hypocrisy? While Buffett Champions Renewables, His Company Fights Rooftop Solar

Mark Chediak, Noah Buhayar and Margaret Newkirk, Bloomberg Warren Buffett highlights how his Berkshire Hathaway Inc. utilities make massive investments in renewable energy. Meanwhile, in Nevada, the company is fighting a plan that would encourage more residents to use green power.
David Appleyard is a contributing editor. A freelance journalist and photographer, he has some 20 years' experience of writing about the renewable energy sector and is based in Europe.

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

EU PVSEC 2015 (European PV Solar Energy Conference and Exhibition)

The EU PVSEC is the largest international Conference for Photovoltaic re...

Sponsor/Exhibitor: MIREC Week 2015

Solectria, Pillar, and Variadores together are co-Silver Sponsors! Come ...

More Power, More Profit Tour - San Diego

Register for the SMA More Power, More Profit Tour for free, in-person sa...

COMPANY BLOGS

EU PVSEC 2014: Call for Papers Receives Great Response

More than 1,500 contributions apply for presentation in AmsterdamScienti...

EU PVSEC 2014 extends its Scope

Added focus on application and policy topicsAbstracts for conference con...

Helping Small Businesses Visualize Savings

    What does a small business owner care about? Most are run...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS