The World's #1 Renewable Energy Network for News, Information, and Companies.

Electrochemical Step Towards Better Hydrogen Storage

Good metal-based systems for hydrogen storage cannot be developed without knowing how this element permeates through metals. Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw managed to apply a user-friendly electrochemical method to study hydrogen diffusion in highly reactive metals.

Hydrogen is seen as a versatile energy carrier for the future. Unfortunately, the element practically does not occur in the free state on Earth. Therefore, it must be first generated (e.g., by electrolysis of water), then stored, to be finally used — ideally in fuel cells transforming chemical energy directly into electrical one. Hydrogen storage represents, however, a serious challenge. The drawbacks of conventional storage tanks for gaseous and liquid hydrogen force us to look for other solutions. One of the promising methods for hydrogen storage makes use of the capability of some metals and alloys to easily uptake this element. The development of efficient hydrogen storage systems requires, however, a detailed knowledge on how hydrogen diffuses in metals.

Hydrogen permeation through metals can be conveniently studied with electrochemical methods. These methods fail, however, for metals where the diffusion of hydrogen is relatively slow, and also in cases where metals strongly react with aqueous electrolyte solutions. The problem relates in particular to magnesium and magnesium alloys that are considered the most attractive materials for hydrogen storage. “We managed to overcome this obstacle”, says Prof. Tadeusz Zakroczymski, whose team at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw has been for many years carrying out comprehensive research on hydrogen permeation, diffusion and uptake in metals.

The information on how hydrogen diffuses in metals is usually obtained from electrochemical measurements of the rate of hydrogen permeation through a sample being usually a membrane separating two independent electrolytic cells. On one side the membrane is charged with hydrogen produced cathodically in an aqueous solution. The electrochemical charging is simple and very efficient. “A relatively low cathode current density, in the range of miliamperes per square centimeter, can correspond to a pressure of gaseous hydrogen in the range of a few tens of thousands of atmospheres”, explains Dr Arkadiusz Gajek (IPC PAS).

Hydrogen atoms enter the membrane, diffuse through it and subsequently leave the membrane on the other side. Here, due to appropriate conditions, they do not recombine but are immediately electrochemically oxidised to protons. This electrochemical detection of hydrogen is extremely sensitive. An easy-to-measure current density of one microampere per square centimeter corresponds a stream of about six trillion (6×10^12) single hydrogen atoms per second per square centimeter.

Prof. Zakroczymski's team constructed a membrane that allows to electrochemically insert hydrogen into highly reactive metals, and — also electrochemically — to detect it. The membrane has a multilayer structure. The main layer, a structural basis of the membrane, is made of iron. This metal was selected because hydrogen atoms move exceptionally fast in iron crystal lattice: their rate of diffusion at room temperature is comparable to that of hydrogen ions in aqueous solutions. Therefore, the iron layer has a relatively small effect on the hydrogen permeation rate through the entire membrane.

Both sides of the iron membrane are coated electrochemically with a thin palladium film. Then they are coated with magnesium and (for protection purposes) again with palladium using PVD methods. Both elements were deposited in cooperation with Prof. Wen-Ta Tsai's laboratory from National Cheng Kung University in Tainan, Taiwan.

“The measured rate of hydrogen permeation through a multilayer membrane depends on hydrogen diffusion in each membrane layer. Because hydrogen diffusion in iron and palladium is a well studied process, the diffusion coefficient of hydrogen in the magnesium layer can be deduced if we know the thickness of each layer”, explains Prof. Zakroczymski.

RELATED ARTICLES

Microgrids

Coast to Coast and Across the Electric System, Microgrids Provide Benefits to All

Dick Munson, Environmental Defense Fund At the most obvious level, microgrids could disrupt today’s utilities and their regulated-monopoly business model, because they challenge the centralized paradigm. In a nutshell, microgrids are localized power grids that ha...
Lead image: Earth with solar and wind. Credit: Shutterstock.

What's In A Name? That Which We Call A Solar Microgrid Is By Any Other Name A Solar Installation

Paula Mints A few years ago in a solar marketing department near you an enterprising executive had an epiphany: the word “microgrid” could be adapted to describe any system of any size and then used to confer a marketing advantage. Mor...
Tesla New Energy Storage Sales

Can Tesla's Battery Hit $1 Billion Faster Than the iPhone?

Tom Randall, Bloomberg Tesla’s new line of big, stackable batteries for homes and businesses started with a bang. The reservations reported in the first week are valued at roughly $800 million, according to numbers crunched by Bloomberg. If Tesla...
Le Cheylas pumped storage plant scheme. Credit: Alstom.

A Solution to Intermittent Renewables Using Pumped Hydropower

Nathalie Lefebvre, Marie Tabarin, and Olivier Teller, Contributors Integrating large quantities of renewable generation with low-carbon technology will require the development of large flexible carbon-free generation and storage assets. Over the last 40 years, numerous large capacity pumpe...

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Energy Storage USA 2015

Energy Storage USA is the leading conference in the United States focuse...

2015 ASME Power & Energy

The ASME Power Conference delivers the very latest power engineering ...

Beyond Integration: Three Dynamics Reshaping Renewables and the Grid

In a unique industry research initiative, DNV GL gathered views from ove...

COMPANY BLOGS

Harnessing the #ElonEffect: Deconstructing the PR Success of Tesla’...

As most of the world has heard by now, Tesla and its co-founder, Elon Mu...

Deadline for Inclusion in Solar Power World's Top Solar Contractors...

UPDATE: The official deadline for the Solar Power World T...

Solar Most Likely the Best Way to Meet Future Energy needs, but… Sa...

A new report out from MIT’s MIT Energy Initiative (MITEI), “...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS