The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Analyzing the Hype of Musk's Solar-powered Hyperloop Transportation System

Last week, technology billionaire Elon Musk revealed his ideas for "hyperloop," a speculative new mode of high-speed transportation. The system would propel car-sized compartments through low-pressure tubes (like pneumatic tubes once used to move mail through office buildings) at 1,000 km/h.

Musk says that connecting San Francisco and Los Angeles (through a proposed $20-fare, 35-minute ride) with the system would cost about $7 billion, or a tenth of the projected cost of California’s beleaguered high-speed rail system meant to connect those cities — and could be built in less than a decade.

Naturally, such a bold idea immediately attracted criticism, such as a USA Today article listing mundane reasons it won’t work like "you’d have to slow down for turns" and "the towers would have to be made safe." Of course, others fell over themselves praising the plan, reasoning that Musk's vision is so awesome that even if it doesn't quite turn out as planned, it would still be great, anyway. While it’s easy to get overly excited or overly skeptical about the concept, a dose of datapoints is useful:

  • If Musk hadn’t proposed it, it wouldn’t be worth attention. Musk is a singularly successful entrepreneur, having quickly turned equally-futuristic ideas into successful businesses several times: electronic money (PayPal moves $150 billion a year), electric vehicles (Tesla is profitable and the cars, though expensive, are critically acclaimed), solar energy (SolarCity gets Lux's much-coveted "Strong Positive"), spaceflight (SpaceX, which developed a national-grade space program in seven years and makes a profit). Musk’s solid record lends credibility to an otherwise fanciful idea.
  • The system requires no exotic new materials, properties of matter, or unproven technologies. Musk’s 57-page detailed explanation of the idea explains how the system might work using relatively off-the-shelf technologies. It acknowledges that there are many engineering problems to be solved, and offers the concept as an open-source blueprint — a starting point for something actually workable. As such, the many solid criticisms of the plan actually move it forward.
  • Musk’s announcement should be seen as political commentary wrapped in an engineering design. The white paper opens not with a visionary problem statement, but by stating, "When the California ‘high speed’ rail was approved, I was quite disappointed, as I know many others were too. How could it be that the home of Silicon Valley and (NASA's Jet Propulsion Laboratory) — doing incredible things like indexing all the world’s knowledge and putting rovers on Mars — would build a bullet train that is both one of the most expensive per mile and one of the slowest in the world?" Like many California taxpayers, Musk is frustrated by the cost overruns, delays, and mediocre performance of the state’s high-speed rail program, and the political problem is arguably the one Musk aims to solve.

Of course, a tech entrepreneur's political commentary isn't newsworthy either, and there has been rampant speculation as to whether Musk — or anyone — could successfully build the contraption. Pneumatic transportation is not novel, and similar — if much slower — versions of pneumatically-propelled people pushers have been envisioned, and even deployed, long ago. Paris and New York had air-powered public transit in the 1870s. The vacuum-tube variation Musk is currently proposing has recently been explored in China and in Switzerland. So how does the concept stand up to technical scrutiny?

  • Hyperloop's cost-per-kilometer would be as revolutionary as its speed. California high-speed rail's high cost per kilometer is as much a consequence of political and environmental issues as the technology, and those concerns would likely dog Hyperloop, too. Musk proposes an elevated, high-technology solution that would indeed address issues like land use, but such systems are if anything even more expensive: the Shanghai Pudong monorail cost $1.3 billion to build and is 30 km long ($40 million/km), while the Airtrain monorail in NYC cost $1.2 billion for just 12 km of track ($100 million/km). One way to defray the cost might be co-locating the route with other state-spanning infrastructure. Using the same right-of-way for a natural gas pipeline or energy transmission lines with PG&E, fiber-optic cable (which are routinely co-located inside city sewers) or water could be part of the calculus.
  • The passenger pod's cousin, Tesla, could supply on-board power technology. On-board batteries are not a technological hurdle, because the initial acceleration (and subsequent boosts) needs would be met by external, stationary linear electric motors and their energy sources. The on-board batteries would then be used primarily for powering a large electric compressor fan at the front of the Hyperloop. The resulting battery would likely be on the order of 200 kWh – about three Tesla Model S's worth of energy storage capacity, which can be engineered using today's battery technology. Moreover, these batteries would contribute only a sliver — less than 0.1 percent — to the overall cost of the Hyperloop, being dwarfed by infrastructure like pylon construction and land permits.
  • Even in sunny California, the solar-powered system would need backup storage. While Musk's plan assumes the energy requirements of the system could be met by solar energy — perhaps he is hoping that SolarCity will get the installation contract — solar panels would need grid storage to operate at the expected utilization rate. So while solar power will help, the larger energy storage opportunity would be in the stationary batteries required to operate the Hyperloop's linear electric motors at night or in poor weather.
  • The open-source model is an open invitation to rail system manufacturers like Bombardier, Siemens, and ABB. Siemens test-drove crowdsourcing by opening up its engineering software to the Local Motors crowd, with the now-available Rally Fighter vehicle a testimony to its success. As with other "big innovations," the spinoffs of R&D on Hyperloop would benefit adjacent technologies, and advance the process of collaborative design. Manufacturers of other high-performance transport vehicles, such as automotive, aircraft, and spacecraft — like Musk's SpaceX or the NewSpace community — should join the Hyperloop crowd.

This article was originally published on Lux Populi and was republished with permission.

Untitled Document

RELATED ARTICLES

Welspun Commissions 52-MW Solar Power Plant in India

Vince Font Leading Indian solar developer Welspun Renewables has commissioned the construction of a massive solar plant in the state of Maharashtra. The planned 52-megawatt (MW) solar plant will be located in the city of Baramati. The...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

SkyPower Inks $2.2 Billion Deal for Massive Solar Power Plant in Kenya

Eric Ombok, Bloomberg Kenya’s Energy Ministry and SkyPower Global Ltd. will sign a $2.2 billion agreement on Sunday that paves the way for the Canadian company to develop a 1-gigawatt solar project in East Africa’s biggest economy. The solar pro...

Making a Match: How Solar Companies and Banks Hook Up

Jennifer Runyon The announcements are fairly frequent: SunPower Partners with Admirals Bank for $200 Million Solar Loan Program, Deutsche Bank to Lend $1 Billion for Japanese Solar Projects, Financing Partnerships Drive North Carolina's So...
Mark Bünger is a Research Director at Lux Research. Based in the firm's San Francisco office, Mark currently leads the Alternative Fuels, Bio-based Materials and Chemicals and Targeted Delivery practices. He joined Lux Research with 14 years of bu...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Presenting at Infocast's Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

COMPANY BLOGS

Behind Every Good Decision

When something about your business isn’t working, you set out to c...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

An Overwhelming Paradox

I’m sure we’re all very familiar with the feeling of being o...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS