The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

When Will Solar Batteries Become Economical?

It's always the same problem: You save energy but the electricity bills are still getting more expensive. Luckily, there is a solution: Solar power can be generated in Germany for 12 cents per kilowatt hour. In contrast, utilities currently charge an average of 25 cents for domestic electricity. What better reason to invest into your own photovoltaic system? Solar storage systems can increase on-site consumption by up to 70 percent. They absorb surplus solar power and pass on the energy as required — expensive grid power is hardly necessary. This makes the systems very attractive for consumers: According to an EuPD Research survey, almost 90 percent of solar operators are already thinking about buying an additional storage system.

Storage system providers are promising economical solutions that customers can’t refuse. Many companies are advertizing that their photovoltaic systems will remain economical despite rising electricity prices during the first twenty years of operation. Scientists, however, are skeptical as to whether these promises can be kept. Battery expert Uwe Sauer from the Institute for Power Electronics and Electrical Drives at RWTH Aachen has developed a model to calculate just how economical battery-based storage units are. It takes into consideration the efficiency of the system, the number of full cycles per year, capital costs and costs for storing power. This has rendered domestic storage systems as downright useless.

Sauer’s approach: First of all, the amount of energy the battery can absorb during its cycle life and pass on again needs to be calculated. For example, the company Deutsche Energieversorgung’s conventional lead-acid battery system may have 3,000 cycles for a capacity of 24 kilowatt hours, equaling 72,000 kilowatt hours in total. A 50 percent depth of discharge at which this cycle life can be achieved must be deducted. Another 80 percent must be deducted to cover the loss of efficiency to the whole system. During its cycle life, the battery has a capacity of around 30,000 kilowatt hours. At €6,300 for the system, storage costs come to 21 cents per kilowatt hour. If you add the 12 cents it costs to produce power on-site, the total cost comes to 33 cents. This sum is considerably higher than the current domestic electricity cost of 25 cents — meaning the system is not economical. Modern lithium-ion batteries offer even less value for money, according to Sauer’s calculations. Storage costs alone come to at least 35 cents for current systems.

According to battery expert Margarete Wohlfahrt-Mehrens from the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) the situation is not quite as dramatic as that. She currently calculates the storage costs of classic lead batteries at around 10 cents and those of lithium ion batteries at 25 cents. These costs could soon drop, as she reckons that lithium technology could also become considerably cheaper. “We estimate that storage costs will be cut by half in the next few years,” says Wohlfahrt-Mehrens. Her reasons include the development of mass production and new innovations, which are helping the industry to develop more efficient production methods and higher-performance lithium ion technologies.

The cathodes and anodes of lithium ion batteries are produced by applying suspensions containing carbon and lithium as liquid electrolytes over a cylinder. It is now the manufacturer’s aim to use larger sheets to speed up the production process. In addition, companies are developing more robust and higher-performance electrode materials. Today’s batteries use graphite for the anode and lithium metal for the cathode. It serves as a chemical reactant for graphite. Manufacturers want to use new anodes made from lithium titanate in the future, which recharge faster and can withstand more load cycles than graphite.

Until economies of scale begin to take effect with more production and innovations, the German Federal Government intends to support the technology. For example, the government is considering granting low-interest loans from state bank KfW to solar installations with storage systems. Paying a subsidy of 30 percent of the costs for the battery is also under consideration. This would significantly reduce the payback period. Will solar batteries soon pay off or do they still have a long way to go?

This article was originally published on Solar Energy Storage and was republished with permission.

Untitled Document

RELATED ARTICLES

Welspun Commissions 52-MW Solar Power Plant in India

Vince Font Leading Indian solar developer Welspun Renewables has commissioned the construction of a massive solar plant in the state of Maharashtra. The planned 52-megawatt (MW) solar plant will be located in the city of Baramati. The...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

SkyPower Inks $2.2 Billion Deal for Massive Solar Power Plant in Kenya

Eric Ombok, Bloomberg Kenya’s Energy Ministry and SkyPower Global Ltd. will sign a $2.2 billion agreement on Sunday that paves the way for the Canadian company to develop a 1-gigawatt solar project in East Africa’s biggest economy. The solar pro...

Making a Match: How Solar Companies and Banks Hook Up

Jennifer Runyon The announcements are fairly frequent: SunPower Partners with Admirals Bank for $200 Million Solar Loan Program, Deutsche Bank to Lend $1 Billion for Japanese Solar Projects, Financing Partnerships Drive North Carolina's So...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Presenting at Infocast's Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

Utility Scale Solar Summit 2015

Oct. 21, 2015 4:30-5:15pm Albie Fong, National Director, Solar Frontier ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

COMPANY BLOGS

Behind Every Good Decision

When something about your business isn’t working, you set out to c...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

An Overwhelming Paradox

I’m sure we’re all very familiar with the feeling of being o...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS