The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Not Just Blowing in the Wind: Compressing Air for Renewable Energy Storage

Enough Northwest wind energy to power about 85,000 homes each month could be stored in porous rocks deep underground for later use, according to a new, comprehensive study. Researchers at the Department of Energy's Pacific Northwest National Laboratory and Bonneville Power Administration identified two unique methods for this energy storage approach and two eastern Washington locations to put them into practice.

Compressed air energy storage plants could help save the region's abundant wind power — which is often produced at night when winds are strong and energy demand is low — for later, when demand is high and power supplies are more strained. These plants can also switch between energy storage and power generation within minutes, providing flexibility to balance the region's highly variable wind energy generation throughout the day.

"With Renewable Portfolio Standards requiring states to have as much as 20 or 30 percent of their electricity come from variable sources such as wind and the sun, compressed air energy storage plants can play a valuable role in helping manage and integrate renewable power onto the Northwest's electric grid," said Steve Knudsen, who managed the study for the BPA.

Geologic Energy Savings Accounts

All compressed air energy storage plants work under the same basic premise. When power is abundant, it's drawn from the electric grid and used to power a large air compressor, which pushes pressurized air into an underground geologic storage structure. Later, when power demand is high, the stored air is released back up to the surface, where it is heated and rushes through turbines to generate electricity.  Compressed air energy storage plants can re-generate as much as 80 percent of the electricity they take in.

The world's two existing compressed air energy storage plants — one in Alabama, the other in Germany — use man-made salt caverns to store excess electricity. The PNNL-BPA study examined a different approach: using natural, porous rock reservoirs that are deep underground to store renewable energy.

Interest in the technology has increased greatly in the past decade as utilities and others seek better ways to integrate renewable energy onto the power grid. About 13 percent, or nearly 8,600 megawatts, of the Northwest's power supply comes from of wind. This prompted BPA and PNNL to investigate whether the technology could be used in the Northwest.

To find potential sites, the research team reviewed the Columbia Plateau Province, a thick layer of volcanic basalt rock that covers much of the region. The team looked for underground basalt reservoirs that were at least 1,500 feet deep, 30 feet thick and close to high-voltage transmission lines, among other criteria.

They then examined public data from wells drilled for gas exploration or research at the Hanford Site in southeastern Washington. Well data was plugged into PNNL's STOMP computer model, which simulates the movement of fluids below ground, to determine how much air the various sites under consideration could reliably hold and return to the surface.

Two Different, Complementary Designs

Analysis identified two particularly promising locations in eastern Washington. One location, dubbed the Columbia Hills Site, is just north of Boardman, Ore., on the Washington side of the Columbia River. The second, called the Yakima Minerals Site, is about 10 miles north of Selah, Wash., in an area called the Yakima Canyon.

But the research team determined the two sites are suitable for two very different kinds of compressed air energy storage facilities. The Columbia Hills Site could access a nearby natural gas pipeline, making it a good fit for a conventional compressed air energy facility. Such a conventional facility would burn a small amount of natural gas to heat compressed air that's released from underground storage. The heated air would then generate more than twice the power than a typical natural gas power plant.

The Yakima Minerals Site, however, doesn't have easy access to natural gas. So the research team devised a different kind of compressed air energy storage facility: one that uses geothermal energy. This hybrid facility would extract geothermal heat from deep underground to power a chiller that would cool the facility's air compressors, making them more efficient. Geothermal energy would also re-heat the air as it returns to the surface.

"Combining geothermal energy with compressed air energy storage is a creative concept that was developed to tackle engineering issues at the Yakima Minerals Site," said PNNL Laboratory Fellow and project leader Pete McGrail. "Our hybrid facility concept significantly expands geothermal energy beyond its traditional use as a renewable baseload power generation technology."

The study indicates both facilities could provide energy storage during extended periods of time. This could especially help the Northwest during the spring, when sometimes there is more wind and hydroelectric power than the region can absorb. The combination of heavy runoff from melting snow and a large amount of wind, which often blows at night when demand for electricity is low, can spike power production in the region. To keep the regional power grid stable in such a situation, power system managers must reduce power generation or store the excess power supply. Energy storage technologies such as compressed air energy storage can help the region make the most of its excess clean energy production.

Working with the Northwest Power and Conservation Council, BPA will now use the performance and economic data from the study to perform an in-depth analysis of the net benefits compressed air energy storage could bring to the Pacific Northwest. The results could be used by one or more regional utilities to develop a commercial compressed air energy storage demonstration project.

The $790,000 joint feasibility study was funded by BPA's Technology Innovation Office, PNNL and several project partners: Seattle City Light, Washington State University Tri-Cities, GreenFire Energy, Snohomish County Public Utility District, Dresser-Rand, Puget Sound Energy, Ramgen Power Systems, NW Natural, Magnum Energy and Portland General Electric.

Lead image: Wind direction via Shutterstock

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox

Subscribe to Renewable Energy World or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

RELATED ARTICLES

energy storage

Energy Storage Surging as More U.S. States Look to Batteries

Mark Chediak, Bloomberg The use of energy-storage systems is surging in the U.S. as power companies show increasing interest in the technolog...

Integrated Renewable Energy for Communities

Gerry Braun Thanks to cost-effective rooftop solar electricity, new neighborhoods in California are generating their own electric...

The Future of California Utilities: AEE Convenes Stakeholders

Charles Thurston What will be the 2050 business model for utilities in California that are being forced by the state to adopt massive ...

Changing Power Market Dynamics Open Up New Opportunities for STE

Frederick Redell There are two major tends driving the U.S. power sector. First, a large number of new technologies are becoming comme...

PRESS RELEASES

Canadian Solar Wins Five Solar Power Projects Totaling 185 MW in Brazil

These power projects were won under a 20-year Power Purchase Agreement (PPA) with the B...

$100 Off of 5-day Advanced PV Project Experience. Download a Topic Schedule.

Assemble, ground, energize, and commission a complete grid-tied SolarEdge system from s...

Intersolar AWARD „Solar Projects in India“ – Applications being accepted until September 18

The Intersolar AWARD in the category Solar Projects in India honors projects in the fie...

National Thought Leaders to Present on Today's Clean Energy Issues & Trends During IREC's 3iForum at Solar Power International

"An encore to the standing-room-only sessions the past two years, IREC again brings som...

FEATURED BLOGS

Washington, DC Bridges the Solar Gap

The District of Columbia has enjoyed 15 years of strong economic growth. But prosperity is spread unevenly across the...

Sell Through Hypothesis

You first learned to hypothesize, or make educated guesses, in grade school science class. Now it’s time to ref...

Cronimet / THEnergy study: In solar for mines size does not always matter - Reducing CAPEX with energy efficiency and load shifting

Munich, September 2015. Mining companies are constantly gaining interest in solar solutions because frequently solar ...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program from

FINANCIAL NEWS

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in Europe – in partnership with GWEC, the Global Win...

There is now 128.8 GW of installed wind energy capacity in the EU (appro...

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

Energy Storage North America

Energy Storage North America (Oct 13-15, 2015, in San Diego, California)...

COMPANY BLOGS

Why Electric Utilities Love Geothermal

When it comes time to think about replacing the heating and cooling syst...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS