The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Marine Energy Breakthrough: New Technology Multiplies Potential

Marine energy is the 'best of the best' amongst green energy sources: it has the greatest potential (in theory, the planet's oceans could supply the entire world with renewable energy), tidal and ocean current power plants are under water and therefore completely invisible, they produce electricity from 100 percent renewable energy sources (the water in the globe's oceans will always move around, well, at least until the sun swallows the moon), they are safe, and the icing on the cake is that they actually have positive environmental effects. Positive? Yes, studies have shown that marine life thrive in marine energy parks.

The UK and Irish waters are especially promising for marine energy, due to the islands’ geographical location. UK and Ireland can provide 25-50 percent of total European marine energy, according to a new report from RenewableUK. The marine energy industry has been forecast to be worth £6.1 billion to the UK economy by 2035, and displacing up to half a million tons of CO2 every year by 2020.

The total amount of wave and tidal stream energy in UK and Irish waters is estimated at 935 TWh/year. Of this, some 98 TWh/year of marine energy resource has been assessed as being economically recoverable with today’s technologies. The current UK annual electricity demand is about 350 TWh/year. No wonder the UK and Ireland are frequently called “the Saudi Arabia of marine energy.” Other countries with great marine energy potential and political or commercial marine programmes already under way are the USA, Canada, China, France, Portugal, Spain, Chile, New Zealand, Japan, China, South Korea and South Africa. 

So why isn’t marine energy more developed and used, and more talked about amongst politicians, decision-makers, environmental movements and the general public? Well, as with all emerging technologies, there are a series of obstacles to harvesting cost-efficient marine energy:

  • Capital costs of marine energy projects are currently relatively high compared with e.g. wind projects.
  • Lack of funding for research, development and demonstration on technology, to both academies and private companies (many of them start-ups). The development of marine energy needs support from both private investors and governments.
  • Regulatory issues. For instance, it can take up to two years to get a site permit for offshore testing.
  • Market challenges like long development timescales, grid connections (or lack thereof), and lack of performance assessment standards.
  • Challenges in offshore operations: the sea is a tough environment in which to install, operate and maintain marine energy power plants. In many tidal energy sites the currents rarely go below 1m/s.
  • Limited locations where tidal and ocean currents are strong enough to be technologically and economically viable to harvest.

Let us take a look at the last two of these obstacles. They can be overcome with new developments in marine energy technology. The fact that most marine energy power plants developed so far can only operate efficiently in currents that are really strong reduces the number of good locations for marine energy parks and complicates offshore operations for installation, service and maintenance. After all, it is not easy to work in strong currents.

Just recently, an ‘underwater kite’ was launched in the waters off Strangford Lough, Northern Ireland. The ‘kite’ consists of a wing and a turbine which is secured to the seabed with a tether and moves fast in an 8-shaped path in the tidal or ocean current. The hydrodynamic principle on which this technology is based allows for the kite to move at speeds of up to ten times that of the flow of water it is operating in. This marine power plant is the only available solution to cost-efficiently produce electricity from slow tidal currents. 

Why is this significant? Well, there are many more sites with low velocity tidal and ocean currents than there are with strong currents. So the possibility to operate cost-efficiently in slow currents extends the total potential for renewable marine energy significantly. In the UK, the amount of energy which is possible to harvest from tidal currents is doubled when low velocity currents are included.

Slow currents are also much easier and less costly to work in; installation and maintenance can be carried out with small Multicat vessels as the ‘kite’ only weighs seven tonnes for a 500-kW turbine. The kite’s robust anchorage system means that no tower is needed. Only attachment and detachment of the kite needs to be done offshore. All this reduces maintenance costs and operating expenses, and results in a cost-efficiency that is comparable with conventional energy sources. 

Even sheer physics is on the underwater kite’s side: it operates 30-60 meters above the seabed, i.e. higher above the seabed than a power plant fixed on the seabed. 75 percent of the marine energy is in the upper 50 percent of the water column (and only 25 percent is in the lower half). So a power plant that operates higher up in the water will capture more energy than a conventional marine energy power plant.

Many or all of the obstacles to efficient marine energy can, and will be, overcome given enough time and funding. New power plants that can operate cost-efficiently in slow currents is one big step forward. There will be other important steps. Marine energy is simply too clean and too potentially beneficial to the planet and its inhabitants to be ignored by politicians, investors and the global energy industry.

Lead image: Sky and ocean via Shutterstock

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now


First U.S. Grid-Connected OTEC Plant Goes Live on Hawaii

Andrew Burger Hawaii Governor David Ige on Aug. 21 joined executives from the Office of Ocean Naval Research (ONR), Makai Ocean Eng...

Makai Builds Ocean Thermal-Energy Demo Plant With U.S. Navy

Anna Hirtenstein, Bloomberg

Makai Ocean Engineering Inc. has built an ocean thermal-energy conversion demonstration plant in Hawaii.

Renewable Energy Gains Greater Opportunity in US Clean Power Plan

Elisa Wood After a year of being pummeled by opponents, Obama’s final carbon reduction plan emerged this week with an even stron...

Listen Up: Vampires Sucking Power from your House

The Energy Show on Renewable Energy World Here’s a nightmare for you: at night, when you’re asleep and you think things are quiet, there are vampires sucking p...


Array Technologies Finalizes Shipments to E.ON’s Maricopa West Solar Project

Array Technologies, Inc. (ATI) has completed DuraTrack® HZ shipments to the 20 MW (ac) ...

B.C. Energy Minister to provide keynote at renewables for mines summit.

BC Minister of Energy and Mines to address the challenges of providing alternative powe...

Mining leaders seek renewables solutions at Toronto Summit

The global mining sector is facing a tough business environment with low commodity pric...

American Renewable Energy Institute Gears Up for 12th Annual Summit

"Racing Climate Change: Green Bridge with China, The Road to Paris” is the theme of th...


New Mexico Attracts Jobs and Revenues with Renewable Energy Tax Credit

New Mexico has abundant fossil fuel resources: in 2013, it ranked sixth in the nation for crude oil production, seven...

The Vice President Stole My Show (Not Really)

When I finished my Solar Power International (SPI) panel discussing what future opportunities the panelists saw in so...

The Value Of The Building

If you’re selling efficiency solutions in the built environment, you may find yourself being asked by your pros...

Sewage provides energy through processing

Many nations are investing in new technology to turn sewage waste into usable energy. Japan has recently revised its ...


Anders Jansson is co-founder and CEO of Minesto, an energy technology company in the field of marine energy, with a patented and proven technology (Deep Green) to harvest energy from low velocity tidal and ocean currents. He has eight years of exp...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



International Energy and Sustainability Conference 2015

The fourth International Energy and Sustainability Conference will be he...

Microhydro System Design and Installation Workshop

Participants will learn about: site assessment techniques including the ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...


The Grab Bag Rides Again

Pregame When I was sports editor for the college newspaper, I wrote a co...

Hydro Dam Role in Water Management

The significance of dams in regulating water flows has been highlighted ...

Speaking Out For Hydro

In January, a columnist with Canada’s The Globe and Mail newspaper...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now