The World's #1 Renewable Energy Network for News, Information, and Companies.

New Solar-cell Design Based On Dots and Wires

Using exotic particles called quantum dots as the basis for a photovoltaic cell is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. A new wrinkle added by a team of researchers at MIT — embedding the quantum dots within a forest of nanowires — promises to provide a significant boost.

Scanning Electron Microscope images show an array of zinc-oxide nanowires (top) and a cross-section of a photovoltaic cell made from the nano wires, interspersed with quantum dots made of lead sulfide (dark areas). A layer of gold at the top (light band) and a layer of indium-tin-oxide at the bottom (lighter area) form the two electrodes of the solar cell. Images courtesy of Jean, et al/Advanced Materials

Photovoltaics (PVs) based on tiny colloidal quantum dots have several potential advantages over other approaches to making solar cells: They can be manufactured in a room-temperature process, saving energy and avoiding complications associated with high-temperature processing of silicon and other PV materials. They can be made from abundant, inexpensive materials that do not require extensive purification, as silicon does. And they can be applied to a variety of inexpensive and even flexible substrate materials, such as lightweight plastics.

But there’s a tradeoff in designing such devices, because of two contradictory needs for an effective PV: A solar cell’s absorbing layer needs to be thin to allow charges to pass readily from the sites where solar energy is absorbed to the wires that carry current away — but it also needs to be thick enough to absorb light efficiently. Improved performance in one of these areas tends to worsen the other, says Joel Jean, a doctoral student in MIT’s Department of Electrical Engineering and Computer Science (EECS).

“You want a thick film to absorb the light, and you want it thin to get the charges out,” he says. “So there’s a huge discrepancy.”

That’s where the addition of zinc oxide nanowires can play a useful role, says Jean, who is the lead author of a paper to be published in the journal Advanced Materials. The paper is co-authored by chemistry professor Moungi Bawendi, materials science and engineering professor Silvija Grade?ak, EECS professor Vladimir Bulovi?, and three other graduate students and a postdoc. 

These nanowires are conductive enough to extract charges easily, but long enough to provide the depth needed for light absorption, Jean says. Using a bottom-up growth process to grow these nanowires and infiltrating them with lead-sulfide quantum dots produces a 50 percent boost in the current generated by the solar cell, and a 35 percent increase in overall efficiency, Jean says. The process produces a vertical array of these nanowires, which are transparent to visible light, interspersed with quantum dots.

“If you shine light along the length of the nanowires, you get the advantage of depth,” he says. But also, “you decouple light absorption and charge carrier extraction, since the electrons can hop sideways onto a nearby nanowire and be collected.”

One advantage of quantum dot-based PVs is that they can be tuned to absorb light over a much wider range of wavelengths than conventional devices, Jean says. This is an early demonstration of a principle that, through further optimization and improved physical understanding, might lead to practical, inexpensive new kinds of photovoltaic devices, he says.

Mark Thompson, a professor of chemistry at the University of Southern California who was not involved in this research, says, "The MIT team has made a real advance." While other groups have tried a similar approach, he says, the MIT team was able to achieve much better control of nanowire dimensions and density. "This required a careful and deliberate study, and the results speak for themselves. I suspect that this is only the beginning, and as they continue to improve their process, we will see even higher efficiencies."

Already, the test devices have produced efficiencies of almost 5 percent, among the highest ever reported for a quantum-dot PV based on zinc oxide, he says. With further development, Jean says, it may be possible to improve the devices’ overall efficiency beyond 10 percent, which is widely accepted as the minimum efficiency for a commercially viable solar cell. Further research will, among other things, explore using longer nanowires to make thicker films, and also work on better controlling the spacing of the nanowires to improve the infiltration of quantum dots between them.

The team, which also included postdoc Sehoon Chang and graduate students Patrick Brown, Jayce Cheng and Paul Rekemeyer, was supported by the National Science Foundation; the MIT Center for Materials Science and Engineering; the Samsung Group; the MIT/Masdar Institute Cooperative Program; the MIT Energy Initiative; the Hertz Foundation; and the Agency for Science, Technology and Research of Singapore.

RELATED ARTICLES

Renewable Energy Finance

Clean Energy ETFs Are on a Tear

Eric Balchunas, Bloomberg Green investing used to be synonymous with losing money. But while the S&P 500 Index is up 2 percent this year, and the MSCI All-Country World Index is up 5 percent, clean energy ETFs have double-digit re...

Wheels, Towers and Trees: Unconventional Renewable Energy Technologies in the Pipeline

Andrew Williams, International Correspondent A number of companies around the world are developing novel technologies in an effort to grab a slice of the global renewable energy market.  Although many of these technologies are simple incremental improvements to e...
UK Parliament Clean Energy Leaders

UK Government Names Clean Energy Cabinet Members

David Appleyard, Contributing Editor With the UK general election now over and a majority Conservative Party government in place, the re-elected Prime Minister David Cameron has now named key members of the government charged with steering the UK’s clean energ...
Microgrids

Coast to Coast and Across the Electric System, Microgrids Provide Benefits to All

Dick Munson, Environmental Defense Fund At the most obvious level, microgrids could disrupt today’s utilities and their regulated-monopoly business model, because they challenge the centralized paradigm. In a nutshell, microgrids are localized power grids that ha...

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

EU PVSEC 2015 (European PV Solar Energy Conference and Exhibition)

The EU PVSEC is the largest international Conference for Photovoltaic re...

CA Wine Industry's 2015 Solar Update- WEBINAR

Proceeds from event registration will go to the CA Sustainable Win...

Energy Security: Opportunity Power with the Sunny Boy Secure Power ...

Wouldn’t it be great to have a grid-tied inverter that could still...

COMPANY BLOGS

EU PVSEC 2014 extends its Scope

Added focus on application and policy topicsAbstracts for conference con...

EU PVSEC 2014: Call for Papers Receives Great Response

More than 1,500 contributions apply for presentation in AmsterdamScienti...

Solar Impulse Flying From China to Hawaii

The team behind Solar Impulse, the solar-powered airplane, is prepa...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS