The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

1366 Technologies Opens New Factory, Paves Road to Cheaper Solar PV

Continuing the crusade to lower solar manufacturing costs, this week 1366 Technologies officially opened its new manufacturing site in Bedford, Mass., a 42,000 square foot facility with 25-megawatt capacity. The site just across the road from fellow solar company Spire, is part of the company's ambitious plans to remove a major chunk of costs and processes out of the solar manufacturing chain, beginning at the very start of the process: the wafer itself.

In a speech kicking off the open house event, Massachusetts Lieutenant Governor Tim Murray reviewed the state's renewable energy trajectory: 11% growth in clean energy jobs in 2012, five thousand companies operating, more than 70,000 700,000 workers, over 190 MW of total solar power capacity (well ahead of the goal of 250 MW by 2017), and solar project development in all but 9 of its 350 towns and cities. 1366 Technologies represents the nexus of the state's desire to work with and support a clean energy industry that will bring both jobs and help power its citizens and businesses.

The new facility's 25-MW capacity (1366 execs said it can actually support up to 20 MW) translates to about 6 million wafers/year. Right now 1366 expects 1-MW of output this year (in the "low 10s of thousands" of wafers) as it debugs and perfects its machines, according to company CTO Ely Sachs who led a tour inside the facility. Next year's target is 10 MW, and then 100 MW the following year — at which point it hopes to be moving into a new 1-GW facility.

The Technology

Today's multicrystalline silicon solar wafers are made by melting chunks of the material in a large quartz crucible (~2 foot long and a foot deep); once the material is molded and cooled it is chopped into a rectangular block and sawed into individual wafers, a process that uses a lot of slurry and wires and results in much wasted material. 1366 uses a much shallower container for its silicon melt, according to Sachs, from which a single wafer is produced on the top; it is subsequently laser-trimmed to a standard 156 × 156 mm size. Sachs wouldn't divulge the company's secret to creating a wafer from the shallow melt, but alluded to an "a-ha" moment about overcoming molten silicon's tendency to bead up vs. making it stick to the mold.

1366's value proposition is to "sell the world's best wafer" with added value including texturing, but made at a fraction of the cost, with better uniformity and performance specifications, summed up CEO Frank van Mierlo in an interview following the open-house. Bottom line: the company says it can reduce silicon costs across the board by to just a third of today's costs: 1/3 off of standard processing, 1/3 the labor, and 1/3 the consumables. Even if silicon prices are a fraction what they were a few years ago, any way to squeeze out more costs — while not altering processes or quality elsewhere in the value chain — still resonates.

Much of 1366's processes, and the equipment to perform them, were invented and created in-house: patterning the wafers with a low-cost polymer, and a wet etch chemistry for texturization are both proprietary, for example. (Diffusion processing is standard, as is metallization/screen printing.) There's an in-house machine shop with a fulltime operator, plus the company outsources some equipment work.

The company also has invested in a lot of characterization capabilities, to quickly get information about the cells made on its wafers; qualification information is obtainable within minutes from when a wafer is made, as opposed to sending out product and getting back results in weeks or even months. "That's a big part of what we do," noted Sachs, because it can indicate whether to go slightly heavier or lighter on a particular gas in the process, or raise/lower the temperature by five degrees, to come up with a different electrical characteristic in the final product. Analyzing the wafer's resistivity can lead to adjusting the dopant that goes into the silicon, for example.

Besides helping 1366 learn how to build a better end product, quick in-house characterization feedback also provides "feed-forward" information to the company's solar-cell customers, who typically tune their processes anyway to accommodate even minor variances in wafers; they can "spin less of their wheels and get to a sweetspot" in process efficiency, Sachs said.

1366 says it has created solar cells with 17 percent efficiency in customer trials, which it deems "industry average." During the facility tour Sachs pointed to current examination of one cell at 17.5 efficiency. For historical reference: 1366 achieved 14 percent cell efficiencies in August 2010, 15 percent in July 2011, and 16 percent in March of last year. Having in-house solar-cell-making capabilities, including characterization, is basically a quality-control effort, but it also "has allowed us to progress much faster," he said.

Scaling Up

Right now 1366 is putting "finishing touches" on what it calls its "Generation-1" equipment, improving upon its previous work on early "Generation-0" tools in which many processes are in sequence — for example, a wafer is cooled in the same physical space in which it is made, creating a bottleneck for the next wafer, Sachs explained. Gen-1 improvements will focus on automating the process, with processes done in parallel; as in the previous example, a wafer is created and then moves to a different cooling system. Separating the steps also will let the company better tweak the process control for each step, he added. The company is already putting together design elements for the next Generation 2 equipment (target date: up and running in 18 months) that will have the same production capacity as Gen-1 but with streamlined design elements and fully automated production that is six times faster, Sachs said.

1366 has accumulated roughly $47 million in equity backing, with VC partners including North Bridge, Polaris, and Ventizz, plus an investment from Korea's Hanwha Chemical. It also has had a $150 million DOE loan guarantee in its back pocket since Sept. 2011, but is reserving that money for when it is ready to build its second facility with 1 GW capacity. Among the key criteria for that DOE-backed loan is that the technology "works flawlessly," it has "firm customer commitments at prices which are profitable," and that it gets private investors to match the loan dollar-for-dollar, explained van Mierlo. All those should come together by the first half of next year, he said.

The real yardstick of success will be how 1366's technology translates to a production-environment scale. The new 25-MW facility is basically a "proving ground" — the real proof will be how it scales up in the next 1-GW factory, assuming all criteria are met to get there. van Mierlo lays out 1366's true argument here: Today a fully loaded cost of legacy wafers is $0.29/W, vs. a sales price of only about $0.20/W, i.e. it's a money-losing proposition. Once 1366 ramps in its big 1-GW factory, it will deliver a wafer cost of $0.10/W, a third of today's fully loaded cost, he said.

In his own opening comments at the open house, van Mierlo said the opening of this new facility puts the company on a "three-year runway" to prove its technology and business. In a follow-up interview he declined to offer specifics about the company's actual revenues now, but he did note the company has been cash-flow-positive from operations for the past three years. "We have real cash commitments," he said, which in fact paid for this new $6 million facility. The eventual 1-GW factory would be a profitable operation from the start, he added. "Financially, we're in really good shape."

Lead image: 1366 Technologies wafer after metallization, in the company's new facility in Bedford, Mass.

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox

Subscribe to Renewable Energy World or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now


Electricity Deregulation

Japan Electricity Deregulation: Birth of Municipally Owned Electric Utilities

Junko Movellan, Correspondent The upcoming retail electricity deregulation in Japan will create a way for Japanese municipal governments to produce...
Solar panel

REC Joins O Capital in Egypt to Tap Solar Panel Market in Middle East, Africa

Anna Hirtenstein, Bloomberg REC Solar ASA has signed a deal with O Capital, the renewable energy arm of Orascom Telecom Media and Technology Hold...
Solar PV

OneEnergy Seeks Authority to Build 6 MW Solar PV Facility in Southern Maryland

Jennifer Delony OneEnergy Renewables is seeking regulatory approval in Maryland to build a 6 MW solar PV facility in Somerset County,...
Solar water heating

California Regulators Propose Expansion of Eligibility Requirements for Solar Water Heating Program

Jennifer Delony The California Public Utilities Commission has proposed expanding the eligibility requirements for customers seeking ...


The Burden – Solar For National Security

The Burden, a ground-breaking documentary about our military’s deadly dependence on oil...

US Solar to Present at South Florida Association of Environmental Professionals June Luncheon

Local, Florida-based solar company US Solar, will be presenting at the South Florida As...

US Solar - Green Planet Festival Highlights Solar Energy and Solar Training This Weekend

US Solar Institute (USSI) is excited to announce that they are the educational sponsor ...

US Solar Hosts Sierra Club Solar Meeting

This past Monday, US Solar welcomed a new group to its solar training classroom – The S...


Industry Focus: Cleantech: 1366 Technologies joins Solarcity in New York

1366 is set to build a factory just up the road (OK, it is a long road – NYS Thruway) from Solarcity.  The...

Solar Decathlon 2015 Opens to the Public in California

Today, Oct. 8, the biennial Solar Decathlon opened up to the public at Orange County Great Park in Irvine, ...

ENER-G CHP technology selected for major London housing scheme

ENER-G has been selected to supply combined heat and power (CHP) technology for phase two of the Leopold Estate housi...

Georgia Legislature Approves PPA’s, Florida Hoping to Follow

Ah, the sunny south, the land of peaches, oranges and solar potential. I’m talking about Georgia and Florida he...


Jim is Contributing Editor for, covering the solar and wind beats. He previously was associate editor for Solid State Technology and Photovoltaics World, and has covered semiconductor manufacturing and related industries, ...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



Successfully Integrating Solar: A Proactive Approach

•      What does the increasing solar penetrati...

Solar Frontier Offsite Office at Solar Power International (2 mins....

Solar Frontier will be hosting an offsite meeting room offering our gues...

PV-Diesel Hybrid Systems to Reduce Diesel Demand

Substantial fuel cost saving potential has made PV technology the centre...


Sell Through Hypothesis

You first learned to hypothesize, or make educated guesses, in grade sch...

Vacancy? No Problem!

Have you ever tried to sell an efficiency product or service to a prospe...

Going The Extra Mile

Selling efficiency takes perseverance, creativity, and a willingness to ...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now