The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Two European Projects Launched to Improve Wind Turbines

Two multiyear projects now being undertaken in Europe aim to improve the technology behind wind power generation: one seeks more efficient and cheaper ways to make the blades, and another wants to swap in a new generator to make the turbines smaller and lighter, and able to be scaled up in power output.

In Germany, the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) has expanded a previous research project into finding ways to automate the manufacturing of rotor blades. Rotor blades make up about a quarter of the total cost of a wind turbine, much of that in manual labor; switching to large-scale industrial production could accelerate the process, improve the quality, while reducing costs. "Rotor blade producers are under great cost pressures which we will tackle with automation," states Florian Sayer of the Fraunhofer IWES.

The IWES and 18 partners are undertaking a five-year joint project, "BladeMaker," aiming to reduce production costs "by well over 10 percent." Work will begin with analysis of work processes and technologies involved in wind rotor blade production, then assessment of where automation might be a better option. For example, explains Sayer, current wind rotor blades are build with a "vacuum infusion process," in which two blade halves are reinforced with fiberglass or carbon-fiber matting (an almost completely manual process); a vacuum environment is created and resin injected to bond the materials, which after hardening are joined and varnished. At the end of the project a demonstration center will showcase the various process steps, and design research and development of rotor blade production.

The BladeMaker project, running until Sept. 2017, is funded with €8 million from the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).

Update: In an email response, Sayer elaborated on the potential of reducing the reliance upon vacuum processes: "A huge potential lays in the optimization and automation of the composite material lay-up (fiber, tapes, foams, etc.) as well as in the mechanical finishing of the products," he said. One option is thermoplastic tape laying, which opens up the ability to weld the structures. Typical polymer systems with "wet layups," such as winding, are also possible but raise quality questions, he noted.

Meanwhile, in Spain, another multiyear project seeks to reduce the cost of offshore wind turbines by about 30% through the development of a new compact superconductor-based generator. The SUPRAPOWER project (SUPerconducting, Reliable, lightweight, And more POWERful offshore wind turbine) spearheaded by Tecnalia after four years of development on a patented concept, aims to design a 10-megawatt offshore wind turbine based on a superconducting generator. Conventional geared and direct-drive permanent magnet generators are difficult to scale up any bigger due to size and weight, which drives up costs for both fixed and floating foundations. Radically reducing the head mass "may be the only technology" able to provide better power scalability, weight reduction and reliability, according to Tecnalia.

Specific goals of the project, which began in December 2012 and runs through the end of November 2016, include: reducing turbine head mass, size, and ultimately cost of offshore wind turbines by about 30 percent, using the compact superconducting generator; realizing lower operating and maintenance and transportation costs through use of a direct drive system; and increasing the reliability and efficiency of high-power wind turbines through use of drive train-specific integration into the nacelle.

Most of the project's roughly €5.4 million budget will be funded by the European Commission as part of its Seventh Framework Program. Industrial partners in the SUPRAPOWER project include Acciona (wind turbine manufacturing and energy divisions), Columbus Superconductors (superconducting wire developer), Oerlikon-Leybold Vacuum (cryogenic systems), and D2M Engineering (offshore engineering firm). Research partners include the Institute of Electrical Engineering Slovak Academic of Sciences, University of Southampton, and Karlsruher Institut Technologie.

Lead image via Tecnalia

Untitled Document

RELATED ARTICLES

U.S. Offshore Wind Power Industry Starting to Emerge

Ehren Goossens, Bloomberg A few miles off the coast of Block Island, a new U.S. industry is emerging from the Atlantic Ocean. That’s where Deepwater Wind LLC is installing a massive steel frame, more than 1,500 tons, that sits on the seabed and juts...

100-MW Kenyan Wind Farm Will Help Power Africa

Renewable Energy World Editors As part of President Obama’s Power Africa initiative, the Overseas Private Investment Corporation (OPIC), the U.S. Government’s development finance institution, announced that it committed $233 million in debt financing to ...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

With 1.6 GW of Wind Capacity Installed in Q2, American Wind Power Continues To Ramp Up in 2015

David Ward, American Wind Energy Association With 1,661 megawatts (MW) of newly installed wind turbines coming online during the second quarter of 2015 and more than 13,600 MW under construction, American wind power continues to increase its contribution to the U.S. e...
Renewable Energy World's network editors help deliver the most comprehensive news coverage of the renewable energy industries. Based in the U.S. and the UK, the team is comprised of editors from Pennwell Corporation's myriad of publications that ...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

StartUp Green

AREI, American Renewable Energy Institute, in partnership with ...

AWEA Offshore WINDPOWER 2015 Conference & Exhibition

Building Up and Trending Forward With the construction of the Block Isla...

COMPANY BLOGS

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Koch Professor drops his Koch title, still makes same errors plus s...

The Koch Professor’s title isn’t the only thing that’s...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS