The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

NREL and Stanford Team up on Peel-and-Stick Solar Cells

It may be possible soon to charge cell phones, change the tint on windows, or power small toys with peel-and-stick versions of solar cells, thanks to a partnership between Stanford University and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

A scientific paper, “Peel and Stick: Fabricating Thin Film Solar Cells on Universal Substrates,” appears in the online version of Scientific Reports, a subsidiary of the British scientific journal Nature

Peel-and-stick, or water-assisted transfer printing (WTP), technologies were developed by the Stanford group and have been used before for nanowire based electronics, but the Stanford-NREL partnership has conducted the first successful demonstration using actual thin film solar cells, NREL principal scientist Qi Wang said. 

The university and NREL showed that thin-film solar cells less than one-micron thick can be removed from a silicon substrate used for fabrication by dipping them in water at room temperature. Then, after exposure to heat of about 90°C for a few seconds, they can attach to almost any surface. 

Wang met Stanford’s Xiaolin Zheng at a conference last year where Wang gave a talk about solar cells and Zheng talked about her peel-and-stick technology. Zheng realized that NREL had the type of solar cells needed for her peel-and-stick project.

NREL’s cells could be made easily on Stanford’s peel off substrate. NREL’s amorphous silicon cells were fabricated on nickel-coated Si/SiO2 wafers. A thermal release tape attached to the top of the solar cell serves as a temporary transfer holder. An optional transparent protection layer is spin-casted in between the thermal tape and the solar cell to prevent contamination when the device is dipped in water. The result is a thin strip much like a bumper sticker: the user can peel off the handler and apply the solar cell directly to a surface.

“It’s been a quite successful collaboration,” Wang said. “We were able to peel it off nicely and test the cell both before and after. We found almost no degradation in performance due to the peel-off.”

Zheng said the partnership with NREL is the key for this successful work. “NREL has years of experience with thin film solar cells that allowed us to build upon their success,” Zheng said. “Qi Wang and (NREL engineer) William Nemeth are very valuable and efficient collaborators.”

Zheng said cells can be mounted to almost any surface because almost no fabrication is required on the final carrier substrates.

The cells’ ability to adhere to a universal substrate is unusual; most thin-film cells must be affixed to a special substrate. The peel-and-stick approach allows the use of flexible polymer substrates and high processing temperatures.  The resulting flexible, lightweight, and transparent devices then can be integrated onto curved surfaces such as military helmets and portable electronics, transistors and sensors.

In the future, the collaborators will test peel-and-stick cells that are processed at even higher temperatures and offer more power.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

Lead image: Solar cells via Shutterstock

Untitled Document

RELATED ARTICLES

Why the Future of the Yieldco Is at Risk

Haresh Patel In the past two years, the proliferation of YieldCos, and their ability to open new sources of capital for renewable energy projects, has captured the attention of the energy industry. While a YieldCo’s potential to catalyz...

Listen Up: Vampires Sucking Power from your House

The Energy Show on Renewable Energy World Here’s a nightmare for you: at night, when you’re asleep and you think things are quiet, there are vampires sucking power out of your house and increasing your electric bill. The fact of the matter is that every plugged in ...

Hawaiian PV Solar Developers Anxious over PUC Decision on 220 MW of Solar Power for the State

Andrew Burger Project developers in Hawai'i eagerly anticipate a Public Utilities Commission (PUC) decision on seven utility-scale solar PV installations with a total capacity of some 220 MWac. Though unconfirmed, word is that the Hawai'...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Grid-connected and Off-grid Photovoltaics

This training covers all aspects of planning, installation, maintenance,...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

2015 Green Energy Expo

Stop by and visit Canadian Solar at the Green Energy Expo in Mexico City!

COMPANY BLOGS

Community Solar Gardens Sprout from Contaminated Sites

Shiny solar electric panels will soon be constructed where red...

US DOE's $15 Million Push to Expand Affordable, Community Solar

The U.S. Department of Energy (DOE) wants to increase access to affordab...

Fort Collins Residents Help City Reach Climate Targets While Saving...

Fort Collins resident Norman Illsley, 90, is making a statement. He purc...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS