The World's #1 Renewable Energy Network for News, Information, and Companies.

Energy Storage Wars: Which Technology Will Win the Battle?

Pumped hydro has been the gold standard of renewable energy storage for decades. Its combination of efficiency (70-85%) and ubiquity (perhaps as much as 99% bulk storage capacity worldwide) have made it the go-to technology for energy storage.

Several American companies think they've developed technologies that will compete with and even surpass the efficiency of pumped hydro.  All of the following companies are developing technologies that they hope will become a meaningful part of the smart grid — and become a viable alternative to pumped hydro.

Cool Compressed Air Energy Storage

Compressed air energy storage (CAES) has been around for decades, mostly using abandoned mines or salt caverns for the storage and retrieval of compressed air to generate electricity.  Since not every city has a handy mine or salt cavern, companies looking to exploit the technology have focused on smaller and more convenient methods of storing and retrieving the energy stored in compressed air.

The wedding rhyme, "Something old, something new, something borrowed, something blue," could be a tagline for SustainX's approach to CAES.  Using proprietary technology (something new) and proven, decades old technologies from other industries (something old, something borrowed), the company's ICAES (isothermal CAES) technology is "able to conserve the heat of compression at fairly low temperatures and reintroduce it during expansion and operate completely fuel free unlike traditional compressed air systems," said Richard Brody, the company's vice president of business development.  "We can store it in pipeline pipe or other pressure vessels.  We don't need salt caverns.  It's the first site-able bulk energy storage solution." 

Brody said that a SustainX's ICAES system should last "at least 20 years" with regular maintenance, making them more cost effective than batteries.  "All batteries and most electro-chemical systems are expensive to start with and have a fairly short deep discharge cycle life," he said.  "You need to replace it every five or six years which absolutely kills the value proposition.

SustainX has a pilot plant at its headquarters in Seabrook, New Hampshire, with field demonstrations planned for 2014.  Brody said that wind and solar energy storage should be good markets for SustainX with grid stabilization a possibility as well.

Battery Wars

Battery storage startups are scrambling to find cost-effective ways to store renewable energy, with the field being particularly crowded and competitive. 

Aquion Energy is sitting pretty, CEO Scott Pearson said.  Recent trials of Aquion's Aqueous Hybrid Ion battery proved that "our batteries do what we thought they'd do," he said.  And "our customers want larger batteries and more of them."

The chemistry powering Aquion's sodium-water battery was developed by Dr. Jay Whitacre at Carnegie Mellon University, where he is an assistant professor.  The batteries are "very simple conceptually - they're carbon, sodium and salt water," Pearson said.  "They require no maintenance over time and they're safe.  You wouldn't like the taste but you could eat one.  You wouldn't die."

Like other energy storage companies, Pearson sees opportunities for Aquion in wind and solar farms and microgrids.  Utilities could also benefit from Aquion's batteries.  "We can help balance out an intermittent supply," he said.  "From the utility side it;s reacting to demand.  If you have a spike in demand we can help."

"We're at a very interesting time in this company," Pearson said.  "We have a proven battery and we are now in volume production in 2013.  It's not a science experiment anymore — it's a vibrant solution."

Flow batteries are another promising battery technology.  "They are rechargeable liquid batteries," said Primus Power CEO Tom Stepien, who helped start the Silicon Valley-based company in 2009.  "Potential is stored as chemical energy, usually in one or two tanks.  That energy is converted to electricity, as those chemicals are pumped through a reaction chamber a reversible chemical reaction takes place.  The plates are zinc typically.  When I first heard about flow batteries four years ago, I said, 'Really?  Do they work?'  The reality is it's just another way of storing electricity." 

The advantages of a flow battery over lithium ion and sodium sulfur batteries include a substantially lower cost per unit energy, long lifespan and safety (they don't run hot like sodium sulfur and lithium ion batteries), Stepien said.

They're also modular — the units are built and delivered in a shipping container, which means they're easy to transport and relocate.  "Some batteries are like a custom home that takes six months to get up and running," Stepien said.  "We have more of a mobile home approach rather than a custom home approach." 

Coconut vs. Carbon

While countless companies are battling for a share of the renewable energy storage market, some firms are finding ways to improve the performance of the components that help store energy.

Seattle-based EnerG2 has patented its process of producing synthetic carbon for use in many storage applications, including ultracapacitors.  Instead of burning and purifying the carbon from coconut husks, EnerG2 produces pure synthetic carbon at a plant in Albany, Oregon.  Synthetic carbon holds many advantages over the "natural" carbon from coconut husks, said Aaron Feaver, the company's chief technology officer and co-founder.

"Coconut has substantial amounts of impurities which are retained in the carbon after processing," Feaver said.  "One specific problem is its high iron content.  Iron is a catalyst and when inserted into an energy storage device results in premature failure." 

EnerG2's pure carbon "stores electrochemical energy at significantly higher rates than coconut carbons" which enables storage devices to run at higher voltages, resulting in a carbon "that can store up to 50% more energy than coconut carbons," Feaver explained.

Not content to merely improve the efficiency of renewable energy storage, EnerG2 has a much more ambitious goal: to make gasoline "no longer make sense."

"The next generation of energy storage improvements is already helping move us in this direction," Feaver said.  "In the end, we believe that these up-and-coming innovations will almost certainly spell the demise of gasoline in our society.  The effort must be collective and collaborative to end the reliance on gasoline and to improve the efficiency of our energy consumption."

RELATED ARTICLES

Microgrids

Coast to Coast and Across the Electric System, Microgrids Provide Benefits to All

Dick Munson, Environmental Defense Fund At the most obvious level, microgrids could disrupt today’s utilities and their regulated-monopoly business model, because they challenge the centralized paradigm. In a nutshell, microgrids are localized power grids that ha...
Lead image: Earth with solar and wind. Credit: Shutterstock.

What's In A Name? That Which We Call A Solar Microgrid Is By Any Other Name A Solar Installation

Paula Mints A few years ago in a solar marketing department near you an enterprising executive had an epiphany: the word “microgrid” could be adapted to describe any system of any size and then used to confer a marketing advantage. Mor...
Tesla New Energy Storage Sales

Can Tesla's Battery Hit $1 Billion Faster Than the iPhone?

Tom Randall, Bloomberg Tesla’s new line of big, stackable batteries for homes and businesses started with a bang. The reservations reported in the first week are valued at roughly $800 million, according to numbers crunched by Bloomberg. If Tesla...
Le Cheylas pumped storage plant scheme. Credit: Alstom.

A Solution to Intermittent Renewables Using Pumped Hydropower

Nathalie Lefebvre, Marie Tabarin, and Olivier Teller, Contributors Integrating large quantities of renewable generation with low-carbon technology will require the development of large flexible carbon-free generation and storage assets. Over the last 40 years, numerous large capacity pumpe...
I am an Oregon-based freelance writer who frequently writes about the energy field. You can contact me at robert@roberttspringer.com or at www.roberttspringer.com.

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Energy Storage USA 2015

Energy Storage USA is the leading conference in the United States focuse...

Beyond Integration: Three Dynamics Reshaping Renewables and the Grid

In a unique industry research initiative, DNV GL gathered views from ove...

Intersolar North America 2015

Exhibition: July 14-16, 2015; Conference: July 13-15, 2015Intersolar Nor...

COMPANY BLOGS

Harnessing the #ElonEffect: Deconstructing the PR Success of Tesla’...

As most of the world has heard by now, Tesla and its co-founder, Elon Mu...

Tesla Introduces Powerwall Home Energy Storage for Solar and More

Yesterday Tesla CEO Elon Musk unveiled Tesla Energy and the Powerwall, t...

Deadline for Inclusion in Solar Power World's Top Solar Contractors...

UPDATE: The official deadline for the Solar Power World T...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS