The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Engineering Microbes for Sustainable Manufacturing and Better Biofuels

Like mini-recycling plants, microbes ingest and break down material to create something new. Scientists around the world are now using bioengineering to harness and improve this processing power to apply it towards solving major environmental challenges.

Using microbes to create useful products is nothing new. Humans have been doing it for centuries to bake bread or brew alcohol, for example.  More recent techniques have employed microbes in green technology, where they are used in the production of biofuels and in the generation of electricity from waste.

But sometimes in a laboratory setting, using microbes that have been finely tuned by evolution is like trying to fit a square peg in a round hole. This is where bioengineering steps in.

Here are three recent examples of how bioengineering microbes could create better biofuels, more sustainable manufacturing, and even the possibility of settlements on Mars.

Synthetic Evolution

Using a non-food feedstock to create biofuels is better both environmentally and economically, which is why researchers from Iowa State University are working to turn corn stalks and sawdust into ethanol.

The process involves heating the feedstock until it becomes a sugar-rich bio oil, then unleashing microbes to feed on the oil and produce ethanol as a by-product. Unfortunately, the microbes have a bad reaction to some of the compounds in the oil, which prevents them from efficiently digesting it.

To work around this, the team is using a technique called directed evolution.

The method works by growing each generation of microbes in a higher concentration of the maligned compounds. Each time the microbes divide, their DNA is replicated, which leads to mistakes in the DNA. The researchers hope one of these mistakes will produce an improved microbe that is tolerant of the oil.

The team has already had some success; some of the newly evolved microbes are able to live in slightly higher concentrations of the compounds. Once the ideal microbe emerges, the researchers will analyze its genetic data in order to duplicate it, and will be on their way to creating better, more sustainable biofuels.

Manufacturing with Microbes

Professor Sang Yup Lee of the Korea Advanced Institute of Science and Technology envisions a future where depletion of natural resources is no longer a side effect of manufacturing plastics and producing conventional fuels and chemicals.

Lee is leading research on how to metabolically engineer Escherichia coli to make plastics, chemicals and fuels from renewable resources.

He and his colleagues recently published a paper detailing their method, which states that their work with E. coli “should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources.”

Following up in a press release, Lee stated: “Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems metabolic engineering. From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses.”

Life on Mars

Is there life on Mars? There will be if we bring it there, which is the premise behind a new plan from NASA to transport engineered microbes to Mars that can be used to build structures on the red planet.

In the plan, detailed in New Scientist, the bacterium Sporosarcina pasteurii will be spliced with E.coli and fed urea — the main waste product of urine — to give it the ability to create calcium carbonate cements.

Using the cement, the rocky material on Mars can be packed together to create bricks.

Because microbes are lightweight and easy to transport, taking them to Mars in place of building materials would save energy and resources, not to mention be a way to put astronaut waste to good use.

This article was originally published on ecomagination and was republished with permission.

Lead image: An electron micrograph of E. coli. Courtesy of the Agricultural Research Service, accessed through Wikimedia Commons.

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox

Subscribe to Renewable Energy World or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

RELATED ARTICLES

Aviation and Greenhouse Gas Reductions: A Role for Renewable Jet Fuels

Tom Ewing In a July 1 Federal Register notice, the U.S. Environmental Protection Agency (EPA) presented plans to control greenh...

PHG Energy Preparing Environmental Permit Application for TN Biomass Gasification Plant

Jennifer Delony PHG Energy (PHGE) is preparing to file with the Tennessee Department of Environment and Conservation an environmental...

The Future of California Utilities: AEE Convenes Stakeholders

Charles Thurston What will be the 2050 business model for utilities in California that are being forced by the state to adopt massive ...

DOE Selects Two Biofuel Development Projects for Funding

Renewable Energy World Editors The U.S. Department of Energy (DOE) on Aug. 27 selected two new projects to receive up to $4 million to develop next-...

PRESS RELEASES

Canadian Solar Wins Five Solar Power Projects Totaling 185 MW in Brazil

These power projects were won under a 20-year Power Purchase Agreement (PPA) with the B...

$100 Off of 5-day Advanced PV Project Experience. Download a Topic Schedule.

Assemble, ground, energize, and commission a complete grid-tied SolarEdge system from s...

Intersolar AWARD „Solar Projects in India“ – Applications being accepted until September 18

The Intersolar AWARD in the category Solar Projects in India honors projects in the fie...

National Thought Leaders to Present on Today's Clean Energy Issues & Trends During IREC's 3iForum at Solar Power International

"An encore to the standing-room-only sessions the past two years, IREC again brings som...

FEATURED BLOGS

Washington, DC Bridges the Solar Gap

The District of Columbia has enjoyed 15 years of strong economic growth. But prosperity is spread unevenly across the...

Sell Through Hypothesis

You first learned to hypothesize, or make educated guesses, in grade school science class. Now it’s time to ref...

Cronimet / THEnergy study: In solar for mines size does not always matter - Reducing CAPEX with energy efficiency and load shifting

Munich, September 2015. Mining companies are constantly gaining interest in solar solutions because frequently solar ...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program from

FINANCIAL NEWS

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @jennrunyon

FEATURED PARTNERS



EVENTS

International Energy and Sustainability Conference 2015

The fourth International Energy and Sustainability Conference will be he...

2015 AREDAY Summit

The 12th Annual AREDAY Summit, August 8-13th in Snowmass Colorado. Engag...

StartUp Green

AREI, American Renewable Energy Institute, in partnership with ...

COMPANY BLOGS

New coating extends cylinder life 8 times longer than traditional c...

Hydroelectric turbine systems operate in extremely harsh conditions. The...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

SAP for Utilities Blog

The Eventful Group produces the annual SAP for Utilites Conference ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS