The World's #1 Renewable Energy Network for News, Information, and Companies.

Engineering Microbes for Sustainable Manufacturing and Better Biofuels

Like mini-recycling plants, microbes ingest and break down material to create something new. Scientists around the world are now using bioengineering to harness and improve this processing power to apply it towards solving major environmental challenges.

Using microbes to create useful products is nothing new. Humans have been doing it for centuries to bake bread or brew alcohol, for example.  More recent techniques have employed microbes in green technology, where they are used in the production of biofuels and in the generation of electricity from waste.

But sometimes in a laboratory setting, using microbes that have been finely tuned by evolution is like trying to fit a square peg in a round hole. This is where bioengineering steps in.

Here are three recent examples of how bioengineering microbes could create better biofuels, more sustainable manufacturing, and even the possibility of settlements on Mars.

Synthetic Evolution

Using a non-food feedstock to create biofuels is better both environmentally and economically, which is why researchers from Iowa State University are working to turn corn stalks and sawdust into ethanol.

The process involves heating the feedstock until it becomes a sugar-rich bio oil, then unleashing microbes to feed on the oil and produce ethanol as a by-product. Unfortunately, the microbes have a bad reaction to some of the compounds in the oil, which prevents them from efficiently digesting it.

To work around this, the team is using a technique called directed evolution.

The method works by growing each generation of microbes in a higher concentration of the maligned compounds. Each time the microbes divide, their DNA is replicated, which leads to mistakes in the DNA. The researchers hope one of these mistakes will produce an improved microbe that is tolerant of the oil.

The team has already had some success; some of the newly evolved microbes are able to live in slightly higher concentrations of the compounds. Once the ideal microbe emerges, the researchers will analyze its genetic data in order to duplicate it, and will be on their way to creating better, more sustainable biofuels.

Manufacturing with Microbes

Professor Sang Yup Lee of the Korea Advanced Institute of Science and Technology envisions a future where depletion of natural resources is no longer a side effect of manufacturing plastics and producing conventional fuels and chemicals.

Lee is leading research on how to metabolically engineer Escherichia coli to make plastics, chemicals and fuels from renewable resources.

He and his colleagues recently published a paper detailing their method, which states that their work with E. coli “should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources.”

Following up in a press release, Lee stated: “Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems metabolic engineering. From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses.”

Life on Mars

Is there life on Mars? There will be if we bring it there, which is the premise behind a new plan from NASA to transport engineered microbes to Mars that can be used to build structures on the red planet.

In the plan, detailed in New Scientist, the bacterium Sporosarcina pasteurii will be spliced with E.coli and fed urea — the main waste product of urine — to give it the ability to create calcium carbonate cements.

Using the cement, the rocky material on Mars can be packed together to create bricks.

Because microbes are lightweight and easy to transport, taking them to Mars in place of building materials would save energy and resources, not to mention be a way to put astronaut waste to good use.

This article was originally published on ecomagination and was republished with permission.

Lead image: An electron micrograph of E. coli. Courtesy of the Agricultural Research Service, accessed through Wikimedia Commons.

RELATED ARTICLES

Japan Microgrid

Born from Disaster: Japan Establishes First Microgrid Community

Junko Movellan, Correspondent Although Japan's Fukushima prefecture is most commonly associated with the 2011 disaster due to the nuclear power melt-down, Miyazaki prefecture, located north of Fukushima, suffered from the largest death toll, close to 10...
UK Parliament Clean Energy Leaders

UK Government Names Clean Energy Cabinet Members

David Appleyard, Contributing Editor With the UK general election now over and a majority Conservative Party government in place, the re-elected Prime Minister David Cameron has now named key members of the government charged with steering the UK’s clean energ...
Microgrids

Coast to Coast and Across the Electric System, Microgrids Provide Benefits to All

Dick Munson, Environmental Defense Fund At the most obvious level, microgrids could disrupt today’s utilities and their regulated-monopoly business model, because they challenge the centralized paradigm. In a nutshell, microgrids are localized power grids that ha...
Alaska Airlines Biofuel

Alaska Airlines, Gevo To Demonstrate Renewable Alcohol-to-Jet Fuel

Jim Lane, Biofuels Digest

In Colorado, Gevo and Alaska Airlines announced a strategic alliance to purchase Gevo’s renewable jet fuel and fly the first-ever commercial flight on alcohol-to-jet fuel (ATJ).

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

International Fuel Ethanol Workshop & Expo

Now in its 31st year, the FEW provides the global ethanol industry with...

Green Energy Summer School: Introduction to Bioenergy

This introductory course gives a detailed overview of the principles of ...

23rd European Biomass Conference and Exhibition

A world class renowned event for dialogue between research, industry, po...

COMPANY BLOGS

US Energy Grid Review Finds Needed Upgrades Would Allow More Solar,...

Yesterday (April 21) the U.S. Department of Energy released the first Qu...

Clean Energy Patents Rise in 2014, Solar Tops others, Toyota and GM...

U.S. patents for Clean Energy technologies in 2014 were again at an all ...

Environmentally friendly solutions for projects

geoAMPS joins the celebration of the worldwide observance of Earth Day o...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS