The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Geothermal Transmission 101: Technologies Are Not Treated Equally

Among renewable resources, one of the most valuable attributes of geothermal electricity is the baseload characteristic of the energy resource. That is, geothermal electricity generators are able to deliver a stable level of power production over time. Yet for better or worse, this baseload characteristic — along with other notable factors such as size constraints and varying market segments — reveals that interconnecting a geothermal plant to a transmission or distribution system poses unique challenges compared to other renewable energy technologies.

A recent report by NREL, "Geothermal Power and Interconnection: The Economics of Getting to the Market," delves into the specialized world of geothermal transmission. Among other things, this report finds that from a transmission perspective, not all types of geothermal energy technologies are treated equally. Conventional hydrothermal technologies likely fit differently into the transmission framework than do emerging geothermal technologies such as enhanced geothermal systems (EGS), co-produced geothermal with oil and gas facilities and geopressured geothermal.

Table 1 shows three geothermal technologies and the corresponding market segment they serve. It also describes how particular attributes of each technology present challenges to connecting to the grid and how they may be considered in long term system planning.

For example, due to their large project size and their proven commercial viability, hydrothermal geothermal technologies offer a wide range of transmission options; the electricity produced by the plants can serve either local grid networks or be exported to other networks (referred to as balancing authorities, "BA," in the table below). The report's author suggests that until they are proven, emerging technologies such as EGS are best utilized serving their home network, but if successful, electricity from these new technologies could eventually be transmitted to other networks as well. Meanwhile, co-produced and geopressured geothermal are likely restricted to distributed generation applications due to remote project locations, large electrical demand of the oil or gas facilities, and relatively small generation capacities (i.e., less than 5 MW).

The author also finds that there are several emerging markets in the Western United States where there is expected to be a near-term need for new baseload generation. These markets are largely where coal plants are expected to be taken offline in the next 5-10 years.  It is estimated that there will be more than 3,000 MW of new baseload opportunities that will emerge from diminished coal usage across the Western United States.  While some of these resources will be replaced with other forms of fossil fuel electricity generation such as natural gas, there is likely enough of a need to also elicit interest from geothermal developers.

The report also shows what the author succinctly describes as "The Uphill Economics of New Transmission." Generally, the cost of new transmission is determined by how much electricity the new line caries. Due to economies of scale, a MW of carrying capability on a large transmission line is cheaper than a MW of carrying capability on a smaller line.  The figure below shows the cost of transmission per megawatt served over various transmission line sizes.

Given that most U.S. geothermal plants are less than 80 megawatts in capacity, they are relatively small energy generators compared to other baseload electricity sources such as coal or natural gas power plants.  Without economies of scale, new transmission for commercially available hydrothermal geothermal is a significant challenge, and in practice, drives even proven hydrothermal geothermal development into areas with existing, but underutilized transmission in place.

As each of these geothermal technologies offers the benefit of a stable electricity generation profile, there is likely to be a demand for the energy they produce. However, the role geothermal energy will play in long term transmission planning remains to be seen.

This article was originally published on NREL Renewable Energy Finance and was republished with permission.

Lead image: Geothermal power station via Shutterstock

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now


CEO Gilles: Challenge in Geothermal is to 'Level Playing Field' with Wind, Solar

Jennifer Delony The current challenge for the geothermal energy industry is what U.S. Geothermal CEO Dennis Gilles calls “leveling th...

Top 5 Reasons To Be Optimistic About Geothermal in the US

Jennifer Delony Joe Greco, Geothermal Energy Association (GEA) board chairman and Terra-Gen Power senior vice president, outlined the...

DOE Releases Final Programmatic Environmental Impact Statement for Hawaii

Jennifer Delony DOE released a final programmatic environmental impact statement for Hawaii to provide federal, state and county gove...

The 800 Ways Taxpayer Money Supports Fossil Fuel Industries

Reed Landberg, Bloomberg As world leaders converge on New York for a United Nations gathering that’s expected to have a strong emphasis on cli...


US Solar Hosts Sierra Club Solar Meeting

This past Monday, US Solar welcomed a new group to its solar training classroom – The S...

US Solar Invited to Speak at Intersolar North America

Intersolar, the largest solar conference and expo in North America is right around the ...

Yaskawa – Solectria Solar Provides Inverters for One of the Largest Professional Sport Stadium PV Systems in North America

Yaskawa - Solectria Solar, a leading U.S. PV inverter manufacturer, announced today tha...

$100 Discount on 5-day Advanced PV Project Experience Workhop

Upcoming 5-day Workshops: Nov. 7 - 11 Feb. 6 - 10


ENER-G CHP technology selected for major London housing scheme

ENER-G has been selected to supply combined heat and power (CHP) technology for phase two of the Leopold Estate housi...

What's On The Card?

Think back to the last networking event you attended. You probably walked out with at least a couple dozen business c...

Georgia Legislature Approves PPA’s, Florida Hoping to Follow

Ah, the sunny south, the land of peaches, oranges and solar potential. I’m talking about Georgia and Florida he...


Necessity is the mother of innovation. Our planet is going through major changes in climate. This of course will affe...


Paul Schwabe is an Energy Analyst with the National Renewable Energy Laboratory’s project finance team and has significant expertise in wind and geothermal projects. He has over 10 years of experience in the energy industry, including electricity ...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Expo:   Register Now for the 2015 GRC ...

GRC Fieldtrip - Long Valley Geology

Led by: Gene Suemnicht and Duncan Foley     &nb...

GeoPower & Heat Summit

The GeoPower & Heat Summit is the most commercial event in the geoth...


Geothermal Event - We've got an app for that!

GRC Annual Meeting & GEA Geothermal Energy Expo has gone mobile! We...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal...

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program f...

GRC Annual Geothermal Photo Contest - View all the Entries

36th Annual Geothermal Photo Contest The Geothermal Resources


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now