The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Microbes Make Methane from Waste Wind Power

We've long depended on coal-fired and natural gas power plants to convert chemical fuel into electricity. Now, scientists have found a way to convert electricity into a fuel using excess power from renewables like wind and solar.

Scientists from Stanford and Pennsylvania State universities have discovered a process to convert electricity into methane — the main constituent of natural gas — using microbes. The fuel is carbon neutral and can use the excess electricity from renewable sources.

“In a sense, it’s the Holy Grail,” says Alfred Spormann, a professor of chemical, civil and environmental engineering at Stanford who is leading this research. “There is a microbiological way to convert electrical energy into chemical fuel. And methane is the most simple fuel that exists and where we have a fairly good infrastructure.”

While methane holds potential as a fuel source, it is also a potent greenhouse gas. It is released en masse from landfills, factory farms and natural gas spills and has more than 20 times the heat-trapping potential of carbon dioxide. But this microbial methane is different, Spormann says.

“The carbon for the methane comes from atmospheric CO2. So the methane that is produced by the microbial electrosynthesis is essentially carbon neutral and so will all other commodity chemicals that can be produced that way,” he says.

The electricity comes from clean energy like wind and solar and the process utilizes electricity that would otherwise be lost. With outdated transmission systems, wind farms and solar photovoltaic power plants often produce more electricity than can be used or stored. In the Pacific Northwest, wind farms were taken offlinethis past spring because of an increase in hydroelectric power from dams due to springtime snow melt and an outdated grid that couldn’t distribute the additional power.

This microbial technology could turn that excess electricity into useable fuel.

Here’s how the process works: As electricity flows through the cathode, the microbes pick up the electrons and metabolize them, releasing methane as a byproduct. Bruce Logan, a professor of civil and environmental engineering at Penn State, was the first to demonstrate the process in a lab, using a methanogen called Methanobacterium palustre. The microbes were spread on a cathode that was then submerged in nutrient-rich water. When an electrical current was applied, the microbes began producing methane at an 80 percent efficiency rate.

But while researchers have successfully converted electricity to methane in the lab, Spormann says there are still gaps in their understanding before they can take this technology to a larger scale. “We have no idea how the enzymes are controlled,” he says. “You need to see what makes this process stable. We don’t understand the ecology of the microorganisms in these electrons to make this process stable and scalable.”

The researchers are working to identify the best candidates for conversion, by studying community mixtures of microbes, bacteria and archaea (other single-celled microorganisms). And Logan is working on advancing cathode technology to increase methane production and making electrodes from more cost-effective materials then the precious metals currently used.

Eventually, they foresee large-scale application of the technology, with microbe cultures across the country churning out methane that can be stored, channeled to various locations using existing natural gas pipelines, and used to fuel everything from airplanes to cars.

Spormann says he anticipates a working prototype within a few years. “Some prototypes we probably could have in three years,” he says. “Then the next question is to scale this up and we have to see what challenges come, but that’s been a great interface between electric chemistry and microbiology and chemical engineering.”

This article was originally published on ecomagination and was republished with permission.

Lead image: Moon Rise behind the San Gorgonio Wind Farm, courtesy Flickr user Caveman Chuck Coker

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now



A Case Study in Energy-Transition Momentum

Tim King South Australia is clearly at the forefront of the global energy transition as it establishes a fast-moving model oth...

Listen Up: Can I Get Solar if my Roof is Shaded?

The Energy Show on Renewable Energy World Rooftop solar panels only work when they are in direct sunlight. So if you have a partially shaded roof, the output o...

US Senate Democrats Unveil Energy Bill That Restores PTC and Extends ITC

Brian Eckhouse, Bloomberg Senate Democrats unveiled a bill that would provide more tax credits for renewable energy while killing some tax ince...

US, China Solar PV Players Team Up, Invest $100M in Chile, Uruguay and Japan

Andrew Burger Private equity infrastructure specialist Hudson Clean Energy Partners and Hong Kong-based independent power producer ...


Array Technologies Finalizes Shipments to E.ON’s Maricopa West Solar Project

Array Technologies, Inc. (ATI) has completed DuraTrack® HZ shipments to the 20 MW (ac) ...

B.C. Energy Minister to provide keynote at renewables for mines summit.

BC Minister of Energy and Mines to address the challenges of providing alternative powe...

Mining leaders seek renewables solutions at Toronto Summit

The global mining sector is facing a tough business environment with low commodity pric...

American Renewable Energy Institute Gears Up for 12th Annual Summit

"Racing Climate Change: Green Bridge with China, The Road to Paris” is the theme of th...


New Mexico Attracts Jobs and Revenues with Renewable Energy Tax Credit

New Mexico has abundant fossil fuel resources: in 2013, it ranked sixth in the nation for crude oil production, seven...

The Vice President Stole My Show (Not Really)

When I finished my Solar Power International (SPI) panel discussing what future opportunities the panelists saw in so...

The Value Of The Building

If you’re selling efficiency solutions in the built environment, you may find yourself being asked by your pros...

Sewage provides energy through processing

Many nations are investing in new technology to turn sewage waste into usable energy. Japan has recently revised its ...



Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



Successfully Integrating Solar: A Proactive Approach

•      What does the increasing solar penetrati...

Solar Power Northeast

  From the team that produced Solar Power Southeast and the sol...

Solar Power Asset Management and Performance

SEIA and SEPA collaborated with industry leaders to present the first ev...


Join us at the New Solar Power Northeast

From the team that produced Solar Power Southeast and the sold out P...

Saving Vs. Gaining

Whenever I do a national keynote speech or customized coaching session f...

SPI Brings Out The Best In Solar

Phew…...those cross-country flights sure take a lot out of a guy....


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now