The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Techniques for Predicting Future Wind Turbine Gearbox Health

In an earlier blog post, I wrote about the return-on-investment of condition based maintenance (CBM) for wind turbines. For those who would like a primer on CBM and the value it provides, start there. But for those who want to learn more about the nitty gritty of CBM, keep reading (or send this to your friendly, neighborhood engineer).

You can find the article about ROI here.

Existing Options

There are a number of commercial condition monitoring (CM) systems that provide diagnostic capabilities for wind turbine gearboxes. While useful for asset management and logistic support, the current products are deficient in two major areas. First, their ability to define a level of damage is immature (e.g., how bad is bad). Second, these systems have limited ability to predict when a component will go bad (e.g., the damage threshold).


The ability to define a damage threshold is complicated by the metric, or condition indicators (CI), used to identify component health. For all but shaft order 1 vibration (the vibration associated with 1 x the rotation rate of a shaft, which has a physical meaning), there are rarely defined limits. For example, there is no physical limit for the gear CIs, such as residual kurtosis, or any other CI. In general, when a CI value is “large” (e.g., residual kurtosis greater then 8), it is assumed that the gear is bad.

Additionally, for many components there is no single CI that works for all failure modes, making it difficult to compare relative failure across components. For bearings, there are condition indicators for the inner race, outer race and roller element. For gears, which have at least 6 different failure modes, there are numerous CIs that work for some failure modes, not but all. While side band modulation can detect a gear misalignment, it is ineffective for a soft tooth. Similarly, residual RMS (root mean square) work well for gear tooth pitting, but is not effective for an eccentric gear.

Learning from Aerospace

One technique that has been successfully used in aerospace CM systems is the Health Indicator (HI). The HI fuses n number of CIs into a single, common indicator of health. For example, the HI can range from 0 to 1, where:

  • a nominal component is 0 to 0.5,
  • a serviceable component ranges from 0.5 to 0.75,
  • a component out of limit ranges from 0.75 to 1, and
  • a component with an HI greater than 1 indicates continued operation would result in collateral damage to other components in the gearbox.

The HI can be designed to have a constant false alarm rate. This is initially set by sampling nominal component data, then using statistical techniques to model the data, account for CI correlation, and ultimately, ensure that a when the HI is greater than 1, it is appropriate to do maintenance. This methodology is useful because, instead of asking the question “when is the component bad,” it asks the question “when is the component not good.” It enables operators to see when components aregoing bad and take proactive steps to avoid more costly damage.

The Value of Prognostics

The HI concept facilitates prognostics by enabling maintenance when a component is no longer good. Using the HI, the remaining useful life (RUL) of the component is then simply the estimated time until when the HI is 1. The operator knows that when the HI is 1, it is necessary to do maintenance (because the component is “not good”).

The prognostic is also dependent on a fault model. Damage of rotating equipment comes from fatigue, which is a function of torque. It’s no surprise that a wind turbine will fail sooner when operating under high loads (e.g., large torques). Paris’s Law relates the rate of change of damage (e.g., crack length) to cyclic loading. In most cases, the parameters needed for Paris’s Law are calculated in the lab. NRG Systems has developed a patent-pending methodology to estimate the unknown parameters by reconstructing them from a state observer. Instead of crack length, a surrogate for damage, the HI, is used. By integrating Paris’s Law, it is possible to estimate the cycles, or time, remaining until the HI is 1.

As a result, this prognostic (or measure of RUL) provides valuable information to operators about when components might go bad and under what conditions. This allows for real-time decision making, such as curtailment under high winds to extend the life of a component. Conversely, the RUL can be used to perform opportunistic maintenance. For example, if a maintenance crew were on-site to tend to more costly damage, they could do well-informed preventative maintenance during the same maintenance event, saving time and money down the road.

The Future for Wind

While these systems aren’t there quite yet, there’s much we could learn from other industries to continually lower the cost of operations and maintenance and strengthen the competitiveness of wind.

This article was originally published on the NRG Systems Blog Wind Currents and was republished with permission.

Image: Wind turbine via Shutterstock

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox

Subscribe to Renewable Energy World or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now


offshore wind

Hitachi Plans to Add Production Line for Offshore Wind Parts

Chisaki Watanabe, Bloomberg Hitachi Ltd. plans to expand its reach into the market for offshore wind projects by adding a production line to make...
Renewable energy

Leading US ICT Companies Renewables Use at 14%, and Growing

Andrew Burger Electricity consumption in the global information and communications technology (ICT) industry is growing rapidly. An...
Wind farms

Western: Streamlined Environmental Review Process for Wind Farms in Midwest ‘Takes Effect Right Away’

Jennifer Delony Western in an Aug. 26 record of decision (ROD) adopted a standardized process for collecting information and evaluati...

NextEra Commits to Hawaii’s Clean Power Goal, Local Management

Lynn Doan, Bloomberg NextEra Energy Inc. and Hawaiian Electric Industries Inc. made 50 new commitments as part of their proposal to merge ...


US Solar Hosts Sierra Club Solar Meeting

This past Monday, US Solar welcomed a new group to its solar training classroom – The S...

US Solar Invited to Speak at Intersolar North America

Intersolar, the largest solar conference and expo in North America is right around the ...

US Solar - Green Planet Festival Highlights Solar Energy and Solar Training This Weekend

US Solar Institute (USSI) is excited to announce that they are the educational sponsor ...

Yaskawa – Solectria Solar Provides Inverters for One of the Largest Professional Sport Stadium PV Systems in North America

Yaskawa - Solectria Solar, a leading U.S. PV inverter manufacturer, announced today tha...


Solar Decathlon 2015 Opens to the Public in California

Today, Oct. 8, the biennial Solar Decathlon opened up to the public at Orange County Great Park in Irvine, ...

ENER-G CHP technology selected for major London housing scheme

ENER-G has been selected to supply combined heat and power (CHP) technology for phase two of the Leopold Estate housi...


Necessity is the mother of innovation. Our planet is going through major changes in climate. This of course will affe...

Georgia Legislature Approves PPA’s, Florida Hoping to Follow

Ah, the sunny south, the land of peaches, oranges and solar potential. I’m talking about Georgia and Florida he...


Dr. Eric Bechhoefer is chief systems engineer at NRG Systems, manufacturer of measurement equipment and turbine optimization systems for the global wind and solar energy industries. In this role he serves as chief engineer and researcher on turbin...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



Doing Business in Europe – in partnership with GWEC, the Global Win...

There is now 128.8 GW of installed wind energy capacity in the EU (appro...

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

Distributed Wind Energy Workshop

Description: Distributed wind energy is electricity that is produced for...


Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Koch Professor drops his Koch title, still makes same errors plus s...

The Koch Professor’s title isn’t the only thing that’s...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now