The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Techniques for Predicting Future Wind Turbine Gearbox Health

In an earlier blog post, I wrote about the return-on-investment of condition based maintenance (CBM) for wind turbines. For those who would like a primer on CBM and the value it provides, start there. But for those who want to learn more about the nitty gritty of CBM, keep reading (or send this to your friendly, neighborhood engineer).

You can find the article about ROI here.

Existing Options

There are a number of commercial condition monitoring (CM) systems that provide diagnostic capabilities for wind turbine gearboxes. While useful for asset management and logistic support, the current products are deficient in two major areas. First, their ability to define a level of damage is immature (e.g., how bad is bad). Second, these systems have limited ability to predict when a component will go bad (e.g., the damage threshold).

Complexities

The ability to define a damage threshold is complicated by the metric, or condition indicators (CI), used to identify component health. For all but shaft order 1 vibration (the vibration associated with 1 x the rotation rate of a shaft, which has a physical meaning), there are rarely defined limits. For example, there is no physical limit for the gear CIs, such as residual kurtosis, or any other CI. In general, when a CI value is “large” (e.g., residual kurtosis greater then 8), it is assumed that the gear is bad.

Additionally, for many components there is no single CI that works for all failure modes, making it difficult to compare relative failure across components. For bearings, there are condition indicators for the inner race, outer race and roller element. For gears, which have at least 6 different failure modes, there are numerous CIs that work for some failure modes, not but all. While side band modulation can detect a gear misalignment, it is ineffective for a soft tooth. Similarly, residual RMS (root mean square) work well for gear tooth pitting, but is not effective for an eccentric gear.

Learning from Aerospace

One technique that has been successfully used in aerospace CM systems is the Health Indicator (HI). The HI fuses n number of CIs into a single, common indicator of health. For example, the HI can range from 0 to 1, where:

  • a nominal component is 0 to 0.5,
  • a serviceable component ranges from 0.5 to 0.75,
  • a component out of limit ranges from 0.75 to 1, and
  • a component with an HI greater than 1 indicates continued operation would result in collateral damage to other components in the gearbox.

The HI can be designed to have a constant false alarm rate. This is initially set by sampling nominal component data, then using statistical techniques to model the data, account for CI correlation, and ultimately, ensure that a when the HI is greater than 1, it is appropriate to do maintenance. This methodology is useful because, instead of asking the question “when is the component bad,” it asks the question “when is the component not good.” It enables operators to see when components aregoing bad and take proactive steps to avoid more costly damage.

The Value of Prognostics

The HI concept facilitates prognostics by enabling maintenance when a component is no longer good. Using the HI, the remaining useful life (RUL) of the component is then simply the estimated time until when the HI is 1. The operator knows that when the HI is 1, it is necessary to do maintenance (because the component is “not good”).

The prognostic is also dependent on a fault model. Damage of rotating equipment comes from fatigue, which is a function of torque. It’s no surprise that a wind turbine will fail sooner when operating under high loads (e.g., large torques). Paris’s Law relates the rate of change of damage (e.g., crack length) to cyclic loading. In most cases, the parameters needed for Paris’s Law are calculated in the lab. NRG Systems has developed a patent-pending methodology to estimate the unknown parameters by reconstructing them from a state observer. Instead of crack length, a surrogate for damage, the HI, is used. By integrating Paris’s Law, it is possible to estimate the cycles, or time, remaining until the HI is 1.

As a result, this prognostic (or measure of RUL) provides valuable information to operators about when components might go bad and under what conditions. This allows for real-time decision making, such as curtailment under high winds to extend the life of a component. Conversely, the RUL can be used to perform opportunistic maintenance. For example, if a maintenance crew were on-site to tend to more costly damage, they could do well-informed preventative maintenance during the same maintenance event, saving time and money down the road.

The Future for Wind

While these systems aren’t there quite yet, there’s much we could learn from other industries to continually lower the cost of operations and maintenance and strengthen the competitiveness of wind.

This article was originally published on the NRG Systems Blog Wind Currents and was republished with permission.

Image: Wind turbine via Shutterstock

Untitled Document

RELATED ARTICLES

States Already Seek To Delay Clean Power Plan

Andrew Harris, Bloomberg Fifteen states led by coal-rich West Virginia asked a federal court to stall Obama administration rules intended to c...

Stolen Solar Panels and Sabotage A Challenge for Powering India With Renewable Energy

Anindya Upadhyay, Bloomberg Disappointment spread across Tarun Singh’s face when he saw that parts of his solar power microgrid in eastern India’...

Global Renewable Energy Roundup: China, Kenya, Turkey, India Seeking More Renewables

Bloomberg News Editors China is being encouraged by three industry groups to double the nation’s solar-power goal for 2020 to make up for sh...

With Vast Amounts of Geothermal, Wind and Hydropower, Why No Solar In New Zealand?

James Ellsmoor, Contributor New Zealand has built an international brand on environmentalism and the great outdoors. So it is unsurprising that t...

PRESS RELEASES

Intersolar AWARD „Solar Projects in India“ – Applications being accepted until September 18

The Intersolar AWARD in the category Solar Projects in India honors projects in the fie...

OFS Announces Commercial Availability of InvisiLight® MDU Optical Solution for Multiple Dwelling Units

OFS, a leading-edge designer, manufacturer and supplier of innovative fiber optic netwo...

New local energy partnership brings innovative solar tracker to Washington State

A new partnership will bring the innovative AllEarth Solar Tracker solar electric syste...

30 days to GRC Annual Meeting & GEA Geothermal Energy Expo

The Geothermal Resources Council (GRC) has announced that it is only 30 days to go to t...

FEATURED BLOGS

Cronimet / THEnergy study: In solar for mines size does not always matter - Reducing CAPEX with energy efficiency and load shifting

Munich, September 2015. Mining companies are constantly gaining interest in solar solutions because frequently solar ...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program from

Vacancy? No Problem!

Have you ever tried to sell an efficiency product or service to a prospect that owns or manages a building with high ...

Shedding Some Light on a Taxing Situation for Community-Shared Solar

For renters and for property owners with inadequate roof space, the many benefits of solar electricity may seem out o...

FINANCIAL NEWS

Dr. Eric Bechhoefer is chief systems engineer at NRG Systems, manufacturer of measurement equipment and turbine optimization systems for the global wind and solar energy industries. In this role he serves as chief engineer and researcher on turbin...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

Wind Operator Congress Europe

The UK’s only business-focused O&M event for the European wind...

Distributed Wind Energy Workshop

Description: Distributed wind energy is electricity that is produced for...

COMPANY BLOGS

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Koch Professor drops his Koch title, still makes same errors plus s...

The Koch Professor’s title isn’t the only thing that’s...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS