The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Understanding Manufacturing Economics for Grid-scale Energy Storage

I have a new favorite word — aggregation. At the risk of sounding like a reporter, I'm going to summarize a pre-holiday news story you might have missed but need to know about.

In late November the PJM Interconnect, the largest of nine regional grid system operators in the U.S., announced that it had begun buying frequency regulation services from small-scale, behind the meter, demand response assets in Pennsylvania. 

The first resources brought on-line by PJM were variable speed pumps at a water treatment plant and a 500 kW industrial battery array at a factory. Each of these resources has been configured to respond to PJM’s signals within four seconds and provide 100 kW of frequency regulation capacity.

In the water treatment plant, the operator will change pump speeds as necessary while keeping average throughput at 80% of nameplate capacity. For the industrial battery array, the operator will shift loads to the battery when the grid needs power and charge the battery when the grid has excess power.  

The contract operators for both installations envision portfolios of flexible industrial loads that can be aggregated and operated as a distributed virtual utility that responds instantaneously to supply and demand conditions on the grid side of the meter. They’re literally turning grid loads into grid assets.

How cool is that?

I learned about the development because my old team at Axion Power International (AXPW.OB) built the battery array and is using its New Castle plant in Pennsylvania as the test-facility. But this was more than just an Axion event because it opens a world of opportunity for all manufacturers of industrial power quality and reliability systems. 

Traditionally, the battery industry’s pitch on industrial energy storage systems focused on ensuring the highest possible level of power quality and reliability for industrial customers. More recently manufacturers have refined their pitch to include other behind the meter benefits like time of use and demand charge management.

This latest twist creates a whole new set of opportunities to reduce the net cost of a customer’s power quality assets by aggregating incremental revenue from grid-side ancillary services. The battery industry is at a tipping point because energy prices have finally reached a level where waste isn’t always cheaper than storage. 

It’s still a tough cost-benefit equation because customers hate anything that eats into margins, but as energy storage system (ESS) developers find new ways to aggregate benefits and use their facilities more efficiently, the potential market grows exponentially. 

Now it’s time to shuck the reporter’s fedora and give my horns a little room to breathe. Let’s drill deeper into the inherently confusing metrics ESS developers use to describe grid-scale storage systems. 

In a recent report on grid-scale ESS costs, the DOE’s Sandia National Laboratories took a bifurcated approach to pricing that separated the costs of the power control subsystem from the costs of the energy storage subsystem. Their summary table of generic ESS costs using the principal battery chemistries breaks down like this.

The problem arises when battery manufacturers focus on a power metric in their public statements, instead of an energy metric, and fail to give readers any clues about who contributes what share of system value. 

To highlight the problem I’ll use Sandia’s numbers to estimate the prices of Axion’s PowerCube and A123 Systems’ (AONE) Laurel Mountain wind farm project.

ESS buyers aren’t stupid. They won’t let battery manufacturers earn the same margin on the power control subsystem that they earn on the energy storage subsystem.

That leads to the inescapable conclusion that a $2 million ESS sale that’s 70% power control systems and 30% batteries is not the same as a $2 million battery sale. At some point the failure to clearly distinguish between purchased components and proprietary components will give rise to stakeholder confusion that could have been avoided. If market participants can’t find a way to effectively communicate the difference between power control subsystem sales and energy storage subsystem sales, they run an enormous risk that investors, analysts, bankers and other stakeholders will over-estimate the relative impact of ESS sales on the bottom line and then be disappointed when their inflated expectations aren’t met. Losing credibility with stakeholders is a luxury that no company can afford. 

Life was simpler when UPS systems integrators built their products and bought batteries as necessary components. It gets far more difficult when battery manufacturers sell ESS products where the bulk of the added value comes from upstream component suppliers. 

While my cup usually overflows with sage advice for anybody who’ll listen, I don’t see any easy answers to this conundrum. I suppose the industry could take the easy way out and claim that the batteries just keep the turbines turning when the wind dies down, but that’s really not an acceptable answer either.

NOTE: This article was first published in the Winter 2012 issue of Batteries International Magazine and I want to thank editor Michael Halls and cartoonist Jan Darasz for their contributions.

Disclosure: Author is a former director of Axion Power International (AXPW.OB) and holds a substantial long position in its common stock.

This article was originally published on AltEnergyStocks.com and was republished with permission.

Untitled Document

RELATED ARTICLES

Welspun Commissions 52-MW Solar Power Plant in India

Vince Font Leading Indian solar developer Welspun Renewables has commissioned the construction of a massive solar plant in the state of Maharashtra. The planned 52-megawatt (MW) solar plant will be located in the city of Baramati. The...

Energy Storage and Geothermal Markets Look To Team Up in the Hunt for Lithium

Meg Cichon In today's fast-paced tech environment, no one can make a splash quite like Elon Musk. So when he decided to enter the energy storage game in 2014, he did it with gusto. Musk is now in the process of building what he coined...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

How Solar Energy Zones and Easy Permitting Helped Create 3-cent Solar

Susan Kraemer, Correspondent Warren Buffet's utility NV Energy has signed the lowest price contract for solar ever, at just US $0.0384 for First Solar’s 100-MW Playa Solar project, beating even its own record low price of $0.046 cents for SunPower's 10...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

StartUp Green

AREI, American Renewable Energy Institute, in partnership with ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

COMPANY BLOGS

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Behind Every Good Decision

When something about your business isn’t working, you set out to c...

An Overwhelming Paradox

I’m sure we’re all very familiar with the feeling of being o...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS