The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

How to Improve Wind Energy Reliability with Cable Standards

When it comes to advancing technologies for alternative energy, there are many issues to consider. Those that impact the system's efficiency, reliability and life-cycle cost should be at the top of the priority list. For example, it's important to be sure that the cables specified for the wind farm align with the standards of the larger grid. To specify anything less is short-term thinking that could result in lost revenue due to downtime, expensive repairs and negative publicity.

Companies should invest significant resources in developing materials that ultimately help distribute power more efficiently and reliably over the life of the entire system. They should also look at projects from a holistic standpoint because everything is interdependent. The success of one component certainly influences the performance of the other components and ultimately impacts the productivity of the entire system.

And that’s why we at Dow Electrical & Telecommunications recommend looking at the cable specification process from the perspective of total life-cycle cost rather than the short-term cost of components and installation. Without proper specifications, potential failures must be anticipated right up front. And because wind energy failure costs are higher than similar voltage utility outages, the wind energy industry may warrant even more demanding specifications than the traditional utility infrastructure.

A reliable, long-lasting power cable collection system can improve the return on investment for the entire system. Benefits include:

  • Enhanced consistency of revenues
  • Lower operating and maintenance expenses
  • Fewer forecasting penalties
  • Maintained public image/goodwill
  • Deferring or even eliminating the need for future capital expenditures

In fact, the life-cycle cost model we’ve developed can be used to help determine the impact cables can have on a wind farm’s return on investment. Variables include:

  • Wind farm specifics like electricity generation size, number of turbines, etc.
  • Cable length and cost
  • Installation cost
  • Predicted cable life
  • Number of expected cable failures
  • Cost per failure
  • Dielectric losses of the cables
  • Discount rate and tax rate

Materials Matter

As part of the life-cycle cost evaluation of the collection system, cable materials must be considered the primary driver of performance. The use of sub-standard cables ultimately puts the owner/operator of the wind farm at risk for certain system-wide failures.

In order to specify the best materials for wind farm applications, some background information on cable insulation materials may be helpful. Medium voltage (MV) power cable insulation can be made with cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR) and water tree-retardant XLPE (TR-XLPE), just to name a few materials. There are many performance variables that vary widely between these materials, the most important of which is cable life expectancy.  

TR-XLPE insulation is now widely utilized for MV underground (UG) power cables for reasons of quality, cost competitiveness, longevity and lower long-term operating costs. Studies have shown that cables made with DOW ENDURANCE™ TR-XLPE materials in UG applications have shown little electrical aging after nearly 30 years in the field and have a forecasted lifetime performance of more than 40 years. It’s important to note, however, that not all TR-XLPE materials are created equal and premature failures are possible without properly specified cables.

Our recommendation is that the wind energy value chain should create cable specifications that require a minimum cable electrical performance AND the use of TR-XLPE insulation. Owner/operators should partner with an experienced high-quality cable manufacturer who will help balance the need for low life-cycle cost with specific performance requirements.

Installation is also an essential part of the overall cable collection system performance and should be completed by trained installers who are experienced in handling, splicing and terminating these high performance systems. A diagnostic test should be performed at commissioning to ensure that the system is in peak working order. Ultimately, this work will pay off. Modeling based on field data suggests that a 5% upfront investment in quality cable materials and installation can save as much as 600% over the life-cycle of the wind farm.

The Need for Cable Performance Standards

Longevity and reliability are critical considerations for cables that support the traditional utility power infrastructure. These performance characteristics are equally as important for the cables that support wind farms. The industry needs to develop and implement standards that will provide efficiency and reliability to owners and customers alike. Specification of the cable insulation material makes all the difference in long-term performance and overall reliability.

Until cable standards for wind farms are developed and field-tested, specifiers and end users should require cables to meet or exceed the current power industry minimum standards. This will help ensure the use of excellent materials, quality cable manufacturing processes and world-class performance, which contribute to system reliability and achieving the highest return on investment.

Collaboration also will help the forward progress of the industry. Groups like AWEA and ICC are certainly important as they support the sharing and distribution of information. But it will take a bigger effort from all involved – investors; developers; independent power providers; utilities, equipment, cable and material suppliers; and others – to achieve the energy goals that are likely to be legislated soon.

Dow Electrical & Telecommunications experts look forward to working on this challenge and encourage our colleagues and industry leaders to join us in this effort.

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox - FREE!

Subscribe to Renewable Energy World Magazine and our award-winning e-Newsletter to stay up to date on current news and industry trends.

 Subscribe Now


US Senate Democrats Unveil Energy Bill That Restores PTC and Extends ITC

Brian Eckhouse, Bloomberg Senate Democrats unveiled a bill that would provide more tax credits for renewable energy while killing some tax ince...

Sage Grouse Removed as Threat to Biggest Wind Farm in U.S.

Christopher Martin, Bloomberg Billionaire Phil Anschutz’s plans to build a $5 billion wind farm in southeast Wyoming will no longer be stymied by t...

CEO Gilles: Challenge in Geothermal is to 'Level Playing Field' with Wind, Solar

Jennifer Delony The current challenge for the geothermal energy industry is what U.S. Geothermal CEO Dennis Gilles calls “leveling th...

NRG Energy to Form Renewable Unit, Sell Wind Assets to Yieldco

Mark Chediak and Matthew Monks, Bloomberg NRG Energy Inc., the worst-performing member of the S&P 500 Utilities Index this year, said it will form a renewa...


US Solar Hosts Sierra Club Solar Meeting

This past Monday, US Solar welcomed a new group to its solar training classroom – The S...

US Solar Invited to Speak at Intersolar North America

Intersolar, the largest solar conference and expo in North America is right around the ...

US Solar - Green Planet Festival Highlights Solar Energy and Solar Training This Weekend

US Solar Institute (USSI) is excited to announce that they are the educational sponsor ...

Yaskawa – Solectria Solar Provides Inverters for One of the Largest Professional Sport Stadium PV Systems in North America

Yaskawa - Solectria Solar, a leading U.S. PV inverter manufacturer, announced today tha...


Solar Decathlon 2015 Opens to the Public in California

Today, Oct. 8, the biennial Solar Decathlon opened up to the public at Orange County Great Park in Irvine, ...

ENER-G CHP technology selected for major London housing scheme

ENER-G has been selected to supply combined heat and power (CHP) technology for phase two of the Leopold Estate housi...


Necessity is the mother of innovation. Our planet is going through major changes in climate. This of course will affe...

Georgia Legislature Approves PPA’s, Florida Hoping to Follow

Ah, the sunny south, the land of peaches, oranges and solar potential. I’m talking about Georgia and Florida he...


Damien Polansky is the North American Market Manager for Dow Electrical & Telecommunications, a business unit of The Dow Chemical Company. He is also Global Market Segment Leader for telecommunications where he serves on the board of the Telecommu...


Volume 18, Issue 4


To register for our free
e-Newsletters, subscribe today:


Tweet the Editors! @jennrunyon



Doing Business in Europe – in partnership with GWEC, the Global Win...

There is now 128.8 GW of installed wind energy capacity in the EU (appro...

JuiceBox Energy Certified Installer Class

JuiceBox Energy is rapidly building out its national certified installer...

Wind Operator Congress Europe

The UK’s only business-focused O&M event for the European wind...


Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Koch Professor drops his Koch title, still makes same errors plus s...

The Koch Professor’s title isn’t the only thing that’s...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...


Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now