The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Researchers Build a Tougher, Lighter Wind Turbine Blade

Efforts to build larger wind turbines able to capture more energy from the air are stymied by the weight of blades. A Case Western Reserve University researcher has built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.

Marcio Loos, a post-doctoral researcher in the Department of Macromolecular Science and Engineering, works with colleagues at Case Western Reserve, and investigators from Bayer MaterialScience in Pittsburgh and Molded Fiber Glass Co. in Ashtabula, Ohio. The team compares the properties of new materials with the current standards used in blade manufacturing.

On his own, Loos went to the lab on weekends and built the world's first polyurethane blade reinforced with carbon nanotubes. He wanted to be sure the composite that was scoring best on preliminary tests could be molded into the right shape and maintain properties.

Using a small commercial blade as a template, he manufactured a 29-inch blade that is substantially lighter, more rigid and tougher.

"The idea behind all this is the need to develop stronger and lighter materials which will enable manufacturing of blades for larger rotors," Loos said.

That's an industry goal.

In order to achieve the expansion expected in the market for wind energy, turbines need a bigger share of the wind. But simply building larger blades isn't a smart answer.

The heavier the blades, the more wind is needed to turn the rotor. That means less energy is captured. And the more the blades flex in the wind, the more they lose the optimal shape for catching moving air, so, even less energy is captured.

Lighter, stiffer blades enable maximum energy and production.

"Results of mechanical testing for the carbon nanotube reinforced polyurethane show that this material outperforms the currently used resins for wind blades applications," said Ica Manas-Zloczower, professor of macromolecular science and engineering and associate dean in the Case School of Engineering.

In a comparison of reinforcing materials, the researchers found carbon nanotubes are lighter per unit of volume than carbon fiber and aluminum and had more than 5 times the tensile strength of carbon fiber and more than 60 times that of aluminum.

Fatigue testing showed the reinforced polyurethane composite lasts about eight times longer than epoxy reinforced with fiberglass. The new material was also about eight times tougher in delamination fracture tests.

The performance in each test was even better when compared to vinyl ester reinforced with fiberglass, another material used to make blades.

The new composite also has shown fracture growth rates at a fraction of the rates found for traditional epoxy and vinyl ester composites.

The team continues to test for the optimal conditions for the stable dispersion of nanotubes, the best distribution within the polyurethane and methods to make that happen.

The functional prototype blades built by Loos, which were used to turn a 400-watt turbine, will be stored in our laboratory, Manas-Zloczower said. "They will be used to emphasize the significant potential of carbon nanotube reinforced polyurethane systems for use in the next generation of wind turbine blades."

Untitled Document

RELATED ARTICLES

100-MW Kenyan Wind Farm Will Help Power Africa

Renewable Energy World Editors As part of President Obama’s Power Africa initiative, the Overseas Private Investment Corporation (OPIC), the U.S. Government’s development finance institution, announced that it committed $233 million in debt financing to ...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

With 1.6 GW of Wind Capacity Installed in Q2, American Wind Power Continues To Ramp Up in 2015

David Ward, American Wind Energy Association With 1,661 megawatts (MW) of newly installed wind turbines coming online during the second quarter of 2015 and more than 13,600 MW under construction, American wind power continues to increase its contribution to the U.S. e...

Some Hope for US Renewable Energy Tax Credits As Extension Bill Passes Committee

Vince Font In a lopsided 23-3 vote, the U.S. Senate Finance Committee voted yesterday to extend a number of renewable energy production tax credits through the end of 2016. The vote allows developers of wind, geothermal, biomass, land...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in South Africa – in partnership with GWEC, the Glob...

Wind Energy in South Africa has been expanding dramatically, growing fro...

StartUp Green

AREI, American Renewable Energy Institute, in partnership with ...

AWEA Wind Resource & Project Energy Assessment Seminar 2015

Join the wind industry's leading owners, project developers, and wind as...

COMPANY BLOGS

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

Koch Professor drops his Koch title, still makes same errors plus s...

The Koch Professor’s title isn’t the only thing that’s...

Fact Check: AWEA represents American wind power

The American Wind Energy Association (AWEA) is proud of its members for ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS