The World's #1 Renewable Energy Network for News, Information, and Companies.

Producing Clean Power in the Absence of Water

It's hard to go on a water-free diet when you're a manufacturing facility, pushing out exhaust heat at more than 400 degrees Fahrenheit. Sure, a solar field or a wind turbine could generate water-free clean energy, but I'm not talking about them. I'm talking about the lumber mills, the cement plants, the utilities, the steelworks and all of the other facilities that already exist and serve as the backbone of American industry.

Every manufacturing process requires heat to produce materials and goods. And the cheapest and fastest way to cool that heat down is through water; more specifically, steam generation. The good news is that all of the fast moving water that’s heated to steam flows through a turbine generator and actually produces energy that is fed back into the process. This is known as a condensing turbine, which uses steam to recover energy. The bad news is that according to the U.S. Geological Survey, almost 2,300 gallons of water are wasted for every megawatt hour of energy generated.

Fresh water is one of our planet’s scarcest natural resources. According to the National Renewable Energy Lab, thermoelectric power alone accounts for 39 percent of all water consumption in the U.S., consuming over 200 million gallons per day. And the majority of that water is used to cool our heated power-production equipment.

But why are manufacturing facilities using water to cool their systems when there has been a water-free technology in existence for more than 50 years?

The water-free technology I’m referring to is the organic Rankine cycle (or “ORC”), which traces its roots to the geothermal power generation sector, where it was first popularized in the late 1960s. These systems operate on the same basic principle as the traditional steam cycle with two notable exceptions: ORCs use a contained organic working fluid (typically an environmental refrigerant) instead of water, and ORCs do not require water for cooling.

ORC that takes all of that exhaust heat and cools it using an environmentally benign refrigerant. The refrigerant moves through a closed loop system, turning from liquid to steam and back to liquid again. It produces continuous power, is completely self sustainable and has a lifespan of at least 20 years. And despite its long-standing popularity in Europe, with over 100 working installations, the technology has suddenly begun to rise in popularity in the U.S.

Historically, industrial operations haven’t had to worry much about the availability of water or the regulations pertaining to the precious natural resource. But things are taking a turn.

Public attention continues to grow around the issue of water scarcity. Its status as a precious resource is forcing power plant developers to absorb new and higher costs as they wrestle with water permitting authorities to bring projects to fruition.  This translates into higher power costs for all customers – both industrial and consumer alike.

The good news is that public awareness of ORC is rising quickly. In particular, industrial and power plant operators have accelerated efforts to work with project developers on ORC-based “waste heat recovery” systems. Across the nation, more than 25 projects have already been completed by a number of developers, with many more in the pipeline.

These waste heat recovery projects harvest the excess thermal energy that is typically vented into the atmosphere by cooling it and repurposing it for power generation. It is the use of organic working fluids with low vapor points and high molecular densities that makes this possible. 

Steel mills, power plants, oil fields, cement plants, paper mills, and refineries are just a few examples of large industrial facilities that have both usable waste heat and a large appetite for electricity. Through the use of ORC-based waste heat recovery, these operations are quickly and easily reducing their demand for the traditional water-cooled steam plants – putting water savings in the millions of gallons per year. And on top of that, the byproduct is clean energy that feeds directly back into the plant, pumping out power in the megawatts.

RELATED ARTICLES

Renewable Energy Is Beginning To Power Africa

Andrew Burger, Contributor According to the International Energy Agency, sub-Saharan Africa will require more than $300 billion in investment to achieve universal electricity access by 2030. Committing more than $7 billion in U.S. government support ...

Renewable Power Can Now Flow All Over Europe

Rachel Morison and Weixin Zha After almost two years of delays, Germany, France and their neighbors in central-western Europe connected their electricity markets on Wednesday under a system that lets prices dictate where power flows between countries. F...

Yingli Seeks to Reassure Investors After Stock Plunge

Louise Downing and Justin Doom Yingli Green Energy Holding Co., the second-largest panel maker said it’s confident it can keep making repayments on its debt and that it is taking steps to mitigate risks to its business. It blamed media reports ...
Electric Vehicle

Tesla E-motorcycles Complement SolarCity Microgrids

Mahesh Bhave, Contributor Batteries are the renewed focus of attention given the launch of Tesla’s PowerWall on April 30. What or where might the next major application be? Utility scale storage appears to be one. My thesis is that launching Tesla e...
Jason Gold is President and Chief Executive Officer of KGRA Energy LP. Mr. Gold launched KGRA in 2009 and developed the corporation’s business model. The company builds distributed power plants that profitably produce renewable electricity from th...

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

Doing Business in Brazil – in partnership with GWEC, the Global Win...

Brazil is one of the most promising markets for wind energy.  Ranke...

EU PVSEC 2015 (European PV Solar Energy Conference and Exhibition)

The EU PVSEC is the largest international Conference for Photovoltaic re...

Wind Power Central America

Wind power projects are expected to reach 46GW of total installed capaci...

COMPANY BLOGS

EU PVSEC 2014 extends its Scope

Added focus on application and policy topicsAbstracts for conference con...

EU PVSEC 2014: Call for Papers Receives Great Response

More than 1,500 contributions apply for presentation in AmsterdamScienti...

Helping Small Businesses Visualize Savings

    What does a small business owner care about? Most are run...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS