The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Power Engineering Names Renewable Project of the Year

This year's Power Engineering Projects of the Year Award winners and honorable mentions represented facilities and/or technology that signified excellence in four categories: coal-fired, gas-fired, nuclear and renewable/sustainable.

Best Renewable/Sustainable Projects

Tekeze Hydropower Project

The Tekeze Hydropower project in Ethiopia, located on the Tekeze River, a tributary of the Nile, is the Project of the Year for renewable/sustainable projects. The $350 million project, funded by the government of Ethiopia and owned by Ethiopian Electric Power Corp., adds 40 percent more electric capacity to the country and was the largest public works project in Ethiopia’s history at the time of construction. Due to the lack of natural resources and the cost of imported fuels, power generation in Ethiopia comes primarily from hydroelectric sources.

The Tekeze Hydropower project is the tallest arch dam in Africa at 188 meters. The 300 MW facility includes a double curvature concrete arch dam, a method of design that minimizes the amount of concrete used. It created a reservoir 70 kilometers in length. An underground powerhouse containing four 75 MW Francis Turbines sits 500 meters downstream of the dam and is fed by a 75-meter-high intake structure connected by a 500-meter-long concrete-lined power tunnel. A 230 kV double-circuit transmission line 105 kilometers long was constructed through mountainous terrain to connect to the Ethiopian national grid.

The project’s beginnings date back to 1995 when the Ethiopian Ministry of Water Resources conducted a study identifying the site as one of two preferred dam sites for hydropower development. MWH joined the project in 1998 and made modifications to an existing design for the dam, powerhouse and tunnel system, resulting in cost savings.

A multi-stage impoundment approach was implemented during construction, which allowed the river diversion to be closed in May 2007, nearly two years prior to dam completion. This allowed for more than 3 billion m3 of water to be retained, advancing generation by more than one full year. The value of the water captured via early impoundment was worth approximately $40 million. In addition to power generation, the Tekeze dam enables regulation of river flow, allowing downstream communities year-round access to the water supply.

A 10-year 2000m3/sec flood on Aug. 9, 2006 was an unexpected test for the dam. The dam proved its ability as a gravity structure and no damage was incurred to any of the permanent structures.

Local community infrastructure was improved as a result of the project, including construction of more than 40 kilometers of roads and installation of the first communications links from the area to the outside world. Also as a result of the project, education was improved in the area as the wife of the MWH chief design engineer spearheaded efforts to build a new school near the village of Seboko. The school was financed by contributions from engineers, contractors and staff working on the project, local residents and a supportive local government.

On-the-job training was also provided to locally-hired employees. Ethiopian Electric Power Corp. implemented programs to provide education and training to local workers. Programs included education to combat AIDS, malaria and other safety, health and welfare issues affecting the local community.

Honorable Mentions

Canoe Creek Hydroelectric Project

Canoe Creek Hydro is a 5.5 MW run-of-river hydroelectric facility on Vancouver Island that provides power to a remote community on the island and helping the island become less reliant on mainland power. The facility is owned and operated by the Tla-o-qui-aht First Nation and located in the heart of the Nation’s Tribal Parkland. The Barkley Project Group Ltd., along with Amnis Engineering and Hazelwood Construction One, worked with Vitaulic, a manufacturer of mechanical pipe joining solutions, to develop Canoe Creek. Construction started in May 2009 and ended in May 2010. The plant went into service in June.

Canoe Creek Hydro operates by diverting stream flow into a penstock at a high elevation – up to 84 percent grade – intake. This made construction a challenge, as did the facility’s location in the Pacific Rim Rainforest, where annual precipitation is amongst the heaviest in the world, particularly in the winter months when construction took place.

Constructing the 4-km-long penstock line in these conditions using welding techniques would have proven difficult. Instead of using mechanical welding on the penstock, the companies used mechanical couplings. In the field, the couplings proved advantageous in many ways. For example, couplings could be installed in any weather condition with no special requirements. Couplings also reduced the amount of excavation, bell holing and dewatering that would be common with welding.

Couplings also improved site safety. As the pipe was already on site, Hazelwood grooved and re-coated the pipe prior to sending it up the single-lane logging road for assembly. In addition, the replacement of welding with mechanical joints allowed for a reduction in the number of laborers required on the job site. Canoe Creek also employed local laborers.

Environmental benefits were also gained by replacing welded joints with mechanical joints. Welding one kilometer of straight-run 36-inch pipe produces about 40,338 kg of CO2 emissions using a diesel-powered machine and 9,463 kg of CO2 emissions using an electric-powered machine. Grooving and coupling that same run of pipe produces 62 kg of CO2 emissions. The use of couplings also reduced the amount of x-raying required on site, reducing radiation emission. PM, CO2 and radiation were reduced, as well as electrical energy use.

Biogas facility owned by PurposeEnergy, Inc.

This biogas facility project at the Magic Hat Brewery in South Burlington, Vt. allows the owner, PurposeEnergy Inc., to use organic waste streams and generate biogas. The biogas is then used by the brewery’s steam boilers and/or PurposeEnergy’s cogeneration plant. In mid-2008, Pizzagalli Construction Co. was selected as the design/build partner for this $3.4 million project at New England’s largest craft brewery. This brewery waste recovery system was developed by CEO and founder of Purpose Energy, Eric Fitch.

Underground process piping, stone aggregate piling for the digester, structural excavation and backfill and all of the concrete work began in December 2009. A 1,600 square foot mechanical building was built and a digester tank was installed. The piping process was completed by May 2010 and the facility began operations in June 2010.

PurposeEnergy’s Biphase Orbicular Biodigester was designed for brewery by-products and enables the conversion of high solids content brewery waste into carbon neutral, renewable biogas. This system is also designed to utilize the waste heat from the generator’s exhaust, coolant and engine oil to heat the digester and preheat the water used in the brewing process.

The PurposeEnergy project has brought many benefits to the facility and environment. By diverting the waste stream created during the brewing process, the brewery’s operating costs have been reduced as Magic Hat Brewery no longer needs to pay for waste treatment surcharges, thereby reducing traffic, noise and air pollution that would result from the transportation of the waste. In addition, the use of this technology creates a clean, carbon neutral energy source that decreases the effects of greenhouse gases on the environment.

To read which coal-fired, gas-fired and nuclear projects of the year Power Engineering named, read the full article here.

Untitled Document

Get All the Renewable Energy World News Delivered to Your Inbox

Subscribe to Renewable Energy World or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

RELATED ARTICLES

JSW Energy refinances US$1.1 billion in hydroelectric project debt

Gregory B. Poindexter JSW Energy Ltd., based in Mumbai, India, is refinancing about US$1.1 billion via a 5:25 financial structure for its h...

JSW Energy refinances US$1.1 billion in hydroelectric project debt

Gregory B. Poindexter JSW Energy Ltd., based in Mumbai, India, is refinancing about US$1.1 billion via a 5:25 financial structure for its h...

First U.S. Grid-Connected OTEC Plant Goes Live on Hawaii

Andrew Burger Hawaii Governor David Ige on Aug. 21 joined executives from the Office of Ocean Naval Research (ONR), Makai Ocean Eng...

Rwanda leases 22 small hydroelectric plants to private consortium

Gregory B. Poindexter On Aug. 27, Rwanda’s Ministry of Infrastructure government announced it has leased 22 small hydropower projects locat...

PRESS RELEASES

Canadian Solar Wins Five Solar Power Projects Totaling 185 MW in Brazil

These power projects were won under a 20-year Power Purchase Agreement (PPA) with the B...

$100 Off of 5-day Advanced PV Project Experience. Download a Topic Schedule.

Assemble, ground, energize, and commission a complete grid-tied SolarEdge system from s...

Former Australian Prime Minister Kevin Rudd talks politics of fear vs. politics of hope

Rudd, who led the Australian parliament from 2007 to 2010, told the Summit audience tha...

Intersolar AWARD „Solar Projects in India“ – Applications being accepted until September 18

The Intersolar AWARD in the category Solar Projects in India honors projects in the fie...

FEATURED BLOGS

Washington, DC Bridges the Solar Gap

The District of Columbia has enjoyed 15 years of strong economic growth. But prosperity is spread unevenly across the...

Sell Through Hypothesis

You first learned to hypothesize, or make educated guesses, in grade school science class. Now it’s time to ref...

Cronimet / THEnergy study: In solar for mines size does not always matter - Reducing CAPEX with energy efficiency and load shifting

Munich, September 2015. Mining companies are constantly gaining interest in solar solutions because frequently solar ...

Final Program Now Available for GRC Annual Meeting & GEA Geothermal Energy Expo

GRC Annual Meeting & GEA Geothermal Energy Expo - Final Program from

FINANCIAL NEWS

Former associate editor for Power Engineering magazine where I used to EPA's regulations for the power industry in detail. For renewables, I write about solar and wind-related policies and technologies. I'm a native of Tulsa, Okla. with a bac...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @jennrunyon

FEATURED PARTNERS



EVENTS

International Energy and Sustainability Conference 2015

The fourth International Energy and Sustainability Conference will be he...

Microhydro System Design and Installation Workshop

Participants will learn about: site assessment techniques including the ...

5th Annual Hydro Plant Maintenance

Join maintenance professionals to discuss the challenges in maintenance ...

COMPANY BLOGS

Speaking Out For Hydro

In January, a columnist with Canada’s The Globe and Mail newspaper...

Years from now we may know the costs of the current El Niño

Hard science lets us know El Niño is real, but how much the weath...

Europe Leading Tidal Development, but US and Asia Catching Up

New analysis from market research and analysis firm Frost & Sullivan...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS