The World's #1 Renewable Energy Network for News, Information, and Companies.

Carbon, Carbon Everywhere But What About the Water?

Everybody's talking about carbon footprints. And how fossil fuels spew carbon into places where it probably should not be spewed. O.K.: We get it.

But despite all the attention directed at carbon, more and more scientists are starting to figure out that it takes so much water to create energy, and so much energy to move water, that whenever we talk about the carbon footprint of energy, we really should be talking about its water footprint as well.

That is because water and energy are linked, as the Bard said, “As two spent swimmers, that do cling together and choke their art.” And until we recognize that connection, we will not be able to figure out how to get the most from our energy and our water.

The connection between most energy and water starts with one simple fact: Except for wind and photovoltaic solar found on rooftops, most power plants big or small do one basic thing: They boil water.

That's it.

The water then makes steam, which spins a turbine, which runs a generator, which creates electricity in a way that is almost miraculous. But with that miracle comes a price: Water. Lots and lots of it.

No matter if it is coal-powered, or nuclear, or oil or even large-scale solar thermal, all that heat has to be cooled down.

Thus the water. And when it is used for cooling, some of it is lost. It takes at least one gallon of water to create one kilowatt hour of power — enough to run your air conditioner for one hour. That water is consumed, not just used.

The numbers tell the tale: Rachelle Hill and Dr. Tamim Younos of Virginia Tech University estimate that “fossil fuel thermoelectric plants use between… 8 to 16 gallons of water to burn one 60-watt light bulb for 12 hours per day. Over the duration of one year this one incandescent light bulb would consume about 3,000 to 6,300 gallons of water.”

That's a lot of water for a little bit of energy.

Other household appliances are just as thirsty: A central air conditioner running for 12 hours a day will drink up 16,800 gallons of water every year at the power plant. A laptop computer uses 200 gallons a year. A coffee maker perking two hours a day needs 672 gallons of water every year to brew that cup of Joe.

Different types of power plants require different amounts of water. The Department of Energy says coal and oil plants need about a gallon or two per kilowatt-hour (kWh). Hydro plants in the Northwest, for example, need 18 gallons for the same amount of energy. Power plants in Arizona use 7 gallons per kWh. In South Dakota, the Department of Energy says the average is 72 gallons of water per kWh. In California, its 4.5 gallons of water per kWh.

These numbers are all about water that is consumed — not just withdrawn. In California, 49 percent of all the water withdrawn in the state is used for energy.

Much of the water used to cool power plants is returned to the river or ocean whence it came, true enough. But not before killing billions and billions of fish and marine mammals every year. Not before a lot of it evaporates.

All that happens just at the power plant. And it is happening all over the country all the time. Just Google ‘power plant fish kill’ and insert the name of your favorite state for numbers near you.

Take one step back from the power plant to the mine or the oilfield, and every day, billions of gallons of water are consumed coaxing energy from beneath the earth.

The amount varies from the one gallon of water it takes to extract a gallon of oil from conventional means, to up to 350 gallons of water for every gallon when the oil is harder to find.

In December 2008, 1.2 billion gallons of water and coal ash escaped from a burst dam in Tennessee. If you want to figure out how much water it will take to get rid of what we now know to be the largest industrial spill in history, or how much water was spoiled once it came in contact with this material, good luck.

To paraphrase a popular saying: it only takes an ounce of water and coal ash to ruin a gallon of ice cream.

For my entire professional career, I’ve been involved in building water and energy infrastructure. I’ve spoken all around the world including China and India, on water and sewer infrastructure as well as the water-energy connection. I’ve also written about it for hundreds of newspapers from the New York Times to the Los Angeles Times. I mention this because I have at times been a bit surprised at the reaction of some folks when they hear people talk about the connection between water and energy.

A newspaper columnist in New Jersey said they had all the water they could ever want and so they did not have to worry about my so called water and energy connection. A network news science reporter saw my articles calling attention to the water energy connection as some kind of global warming plot — which he did not approve of.

And so the science — the civil engineering — is politicized to the point where some folks who should know better try and deny the obvious.

Let’s add this to the obvious: Clean water is a scarce and valuable commodity -- the scarcity of which is killing millions of people every year, and making tens of millions more sick.

These are the stakes of the water and energy connection. And we should not forget or deny them.

The water it takes to create energy is still only half the picture. It also takes a tremendous amount of energy to move, treat and ultimately dispose of water.

In California, 20 percent of the energy in the state is used to move water. We use water to create energy, and we use energy to create water — to create more energy to create more water. And on and on and on it goes in a downward spiral — like the “two spent swimmers that cling together” — that completely distorts the way we think and act about water and power. Whenever we waste energy, we waste water.

Big transmission lines, for example, which carry energy from the thirsty power plants to energy-hungry refrigerators and light bulbs hundreds of miles away leak energy like a sieve. They lose 7 percent of their juice before lighting a single bulb.

That's not just wasting power, its wasting water too.

Not all power plants create heat. Photovoltaic solar panels — the kind found on roofs and backyards and schools and wineries and farms and roads and office buildings and hotels — create electricity, not heat.

And that is why a growing number of governments, businesses and even utilities are taking a more serious look at photovoltaic solar PV as a safer, more secure and more water-smart energy alternative.

Tom Rooney is President and CEO of SPG Solar Inc.

RELATED ARTICLES

Rooftop Solar Panels

Hypocrisy? While Buffett Champions Renewables, His Company Fights Rooftop Solar

Mark Chediak, Noah Buhayar and Margaret Newkirk, Bloomberg Warren Buffett highlights how his Berkshire Hathaway Inc. utilities make massive investments in renewable energy. Meanwhile, in Nevada, the company is fighting a plan that would encourage more residents to use green power.
Japan Microgrid

Born from Disaster: Japan Establishes First Microgrid Community

Junko Movellan, Correspondent Although Japan's Fukushima prefecture is most commonly associated with the 2011 disaster due to the nuclear power melt-down, Miyazaki prefecture, located north of Fukushima, suffered from the largest death toll, close to 10...
Renewable Energy Finance

Clean Energy ETFs Are on a Tear

Eric Balchunas, Bloomberg Green investing used to be synonymous with losing money. But while the S&P 500 Index is up 2 percent this year, and the MSCI All-Country World Index is up 5 percent, clean energy ETFs have double-digit re...

Wheels, Towers and Trees: Unconventional Renewable Energy Technologies in the Pipeline

Andrew Williams, International Correspondent A number of companies around the world are developing novel technologies in an effort to grab a slice of the global renewable energy market.  Although many of these technologies are simple incremental improvements to e...

CURRENT MAGAZINE ISSUE

03/01/2015
Volume 18, Issue 3
file

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

EU PVSEC 2015 (European PV Solar Energy Conference and Exhibition)

The EU PVSEC is the largest international Conference for Photovoltaic re...

Sponsor/Exhibitor: MIREC Week 2015

Solectria, Pillar, and Variadores together are co-Silver Sponsors! Come ...

More Power, More Profit Tour - San Diego

Register for the SMA More Power, More Profit Tour for free, in-person sa...

COMPANY BLOGS

EU PVSEC 2014: Call for Papers Receives Great Response

More than 1,500 contributions apply for presentation in AmsterdamScienti...

EU PVSEC 2014 extends its Scope

Added focus on application and policy topicsAbstracts for conference con...

Boulder County Residents Generate Their Own Energy with Community S...

Despite a soggy afternoon, solar energy advocates gathered at ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS