The World's #1 Renewable Energy Network for News, Information, and Companies.
Untitled Document

Turning Fungus into Fuel

A spidery fungus with a voracious appetite for military uniforms and canvas tents could hold the key to improvements in the production of biofuels, a team of government, academic and industry researchers has announced.

In a paper published Sunday in Nature Biotechnology, researchers from the Los Alamos National Laboratory and the Department of Energy’s Joint Genome Institute announced that the genetic sequence of the fungus Tricoderma reesei has uncovered important clues about how the organism breaks down plant fibers into simple sugars. The finding could unlock possibilities for industrial processes that can more efficiently and cost effectively convert corn, switchgrass and even cellulose-based municipal waste into ethanol. Ethanol from waste products is a more-carbon-neutral alternative to gasoline.

The fungus T. reesei rose to dubious fame during World War II when military leaders discovered it was responsible for rapid deterioration of clothing and tents in the South Pacific. Named after Dr. Elwyn T. Reese, who, with colleagues, originally isolated the hungry fungus, T. reesei was later identified as a source of industrial enzymes and a role model for the conversion of cellulose and hemicellulose — plant fibers — into simple sugars.

The organism uses enzymes it creates to break down human-indigestible fibers of plants into the simplest form of sugar, known as a monosaccharide. The fungus then digests the sugars as food.

Researchers decoded the genetic sequence of T. reesei in an attempt to discover why the deep green fungus was so darned good at digesting plant cells. The sequence results were somewhat surprising. Contrary to what one might predict about the gene content of a fungus that can eat holes in tents, T. reesei had fewer genes dedicated to the production of cellulose-eating enzymes than its counterparts.

“We were aware of T. reesei’s reputation as producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient,” said Los Alamos bioscientist Diego Martinez (also at the University of New Mexico), the study’s lead author. The researchers believe that T. reesei’s genome includes “clusters” of enzyme-producing genes, a strategy that may account for the organism’s efficiency at breaking down cellulose.

On an industrial scale, T. reesei could be employed to secrete enzymes that can be purified and added into an aqueous mixture of cellulose pulp and other materials to produce sugar. The sugar can then be fermented by yeast to produce ethanol.

“The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals,” said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, a collaborating institution in the study. “The information contained in its genome will allow us to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals.”
Untitled Document

RELATED ARTICLES

US Clean Power Plan Could Include Carbon Trading

Mark Drajem, Bloomberg Some businesses that back President Barack Obama’s plan to curb greenhouse gases are making a late lobbying push to add an element similar to a cap-and-trade program. With the administration set this week or next to unveil ...

Listen Up: Vampires Sucking Power from your House

The Energy Show on Renewable Energy World Here’s a nightmare for you: at night, when you’re asleep and you think things are quiet, there are vampires sucking power out of your house and increasing your electric bill. The fact of the matter is that every plugged in ...

Energy Storage and Geothermal Markets Look To Team Up in the Hunt for Lithium

Meg Cichon In today's fast-paced tech environment, no one can make a splash quite like Elon Musk. So when he decided to enter the energy storage game in 2014, he did it with gusto. Musk is now in the process of building what he coined...

Regional News from the July/August 2015 Digital Edition of Renewable Energy World

Renewable Energy World Editors EcoFasten Solar announced that it launched a new mounting "Rock-It System" that it would be displaying during Intersolar. Product compliance was determined through testing per UL Subject 2703, which reviews integr...

CURRENT MAGAZINE ISSUE

Volume 18, Issue 4
1507REW_C11

STAY CONNECTED

To register for our free
e-Newsletters, subscribe today:

SOCIAL ACTIVITY

Tweet the Editors! @megcichon @jennrunyon

FEATURED PARTNERS



EVENTS

StartUp Green

AREI, American Renewable Energy Institute, in partnership with ...

SAP for Utilities

SAP for Utilities is North America’s most comprehensive utilities ...

2015 AREDAY Summit

The 12th Annual AREDAY Summit, August 8-13th in Snowmass Colorado. Engag...

COMPANY BLOGS

New coating extends cylinder life 8 times longer than traditional c...

Hydroelectric turbine systems operate in extremely harsh conditions. The...

Clean Energy Patents Maintain High Levels in First Quarter, Solar L...

U.S. patents for Clean Energy technologies from the first quarter of 201...

SAP for Utilities Blog

The Eventful Group produces the annual SAP for Utilites Conference ...

NEWSLETTERS

Renewable Energy: Subscribe Now

Solar Energy: Subscribe Now

Wind Energy: Subscribe Now

Geothermal Energy: Subscribe Now

Bioenergy: Subscribe Now  

 

FEATURED PARTNERS